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FOREWORD

This report was prepared by the Boundary Laye: Research Section
under the direction of Dr. Werner Pfenninger, Northrop Norair, a
Division of Northrop Corporation, Hawthorne, California, and covers
research investigations performed from July 1959 through March 1963
under Contract AF33(616)-7564. This work was performed under Air
Force Task No. 136612 of Project No, 1366, "“Laminar Boundary Layer
Control Research.™

The work was administered under the direction of the Flight Dynamics

Laboratory, Aeronautical Systems Division. Mr. Philip P. Antonatos and
Mr. J. P. Nenni were prcject engineers for the Laboratory.
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ABSTRACT

At subsonic speeds, full length laminar flow and low drags were
obtained up to high length Reynolds numbers on a thin straight, on a
swept laminar suction wing and on a suction body of revolution. Mod-
erately increased suction rates in the most critical region of a
straight and a swept laminar suction wing enabled full chord laminar
flow in the presence of external sound. Theoretical investigations
are concerned with nonlinear boundary layer oscillations and stability
investigations (assuming small disturbances) of a supersonic laminar
boundary layer on a flat plate up to high supersonic speeds as well as
on a highly swept supersonic low drag suction wing of low wave drag.

On a supersonic flat laminar suction plate with and without w2ak inci-
dent shock wavers, extensive laminar flow and low equivalenf drags were
obtained at M = 3 up to length Reynolds numbers of 26 X - /7 Further
supersonic low drag suction experiments on a suction body of revolution,
on a 36“>subersonic yawing wing, as well as on a 729 supersonic yawing
lwing (swept behind the Mach cone) of low wave drag, z.e described.] The
latter wing showed full chord laminar flow with a subsonic type pressure
distribution at M = 2 and Rya49X 18,
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SUMMARY

SECTICN 1--THECRETICAL INVESTIGATICNS

Chapter A of the theoretical investigations deals with the growth
of boundary layer oscillations and the phenomena leading to transition, using
the full nonlinear boundary layer disturbance equations. A theory is developed
around the concept that, under certain frequent conditions and as a result of
the nonlinearity of the equations, two partial oscillations of the whole motion
can drive a third partial oscillatinn in a rescnance-iike manner to a large
amplitude (Section I, Chapter A and Reference 1J. The two driving oscillations
can come from external disturbances--such as a roughness of the wall surface
and a fluctuation of the erternal flow--or from the internal disturbance
motions generated by preceding resonance-like interactions. For example, the
tollowing combinations of driving oscillations can produce significant ampli-
fications: (1) an oscillation from surface roughness or surface vibration
and an oscillaticn from external turbulence or sound, (2) either of these os-
cillations and an internal boundary layer oscillaticn, or (3) two internal
boundary layer oscillations.

In deducing the theory, the whole motioa is decomposed into a
sequence of perturbations from a laminar flow, and then each perturbation is
decomposed into a spectrum of Fourier components. The first perturbation is
determined solely by the boundary irregularities at the wall surface and in
the external flow, whereas each higher perturbation is determined mainly by
the driving oscillations from the lower perturbations. Expressions for the
resonance-like growth of the Fourier coefficients are derived, proceeding in
a recursive manner from lower to higher perturbations. The role of these
growths in producing transition phenomena is explained. Some aspects of the
calculation techniques required to apply the theory also are discussed.

Chapter B of the theoretical investigations discusses calculations
and resulcs of the stability limit Reynolds number of the boundary layer on
an insulated flat plate up to M = 5.8 (also see Reierence 2). The cases of
constant stagnation temperature at various Mach numbers, corresponding es-
sentially to wind tunnel conditions, and of constant static temperature at
differznt Mach numbers, corresponding to flight conditions, have been analyzed.
The full linearized stability equations of the compressible laminar bour.'<iy
layer, as derived by Lees and Lin, have been integrated numerically from the
wall to the outer edge of the boundary layer. The wave number o, wave velocity
C, and boundary layer Reynolds number have been chosen such that the "inner™
solution of the disturbance equation, as obtained from the integration through
the boundary layer, is matched at the outer edge of the boundary layer with
the *outer’ solution beyond the outer edge of the boundary layer.

With increasing Mach number tne stability limit Reynolds number of
an insulated flat plate ot zero pressure gradient first decreases slightly up
to M =~ 1 and rises again at supersonic speeds. Fcr the case of constant static
temperature, i.e., for flight conditions, the stability limit Reynolds number
rises rapidly at higher Mach numbers. The corresponding rise of the stability
limit Reynolds number of the compressible laminar boundary layer or an insulated
flat plate at higher Mach numbers is considerably smaller for the case of con-
stant stagnation temperature, corresponding essentially to wind tunnel conditions,
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SUMMARY (continued)

This difference is due to the variation of the properties of the air (viscosity,
etc.) with temperature, which changes tne boundary layer profile and the
stability limit Reynolis number.

In view of *%h2 increased stability limit Reynolds numbers at super-
sonic speeds, it should basically be easier to maintain laminar flow at further
increased length Reynclds numbers, as compared with the incompressible case,

at least as long as interacting shock waves or boundary layer crossflow insta-
bility are not critical.

Boundary layer crossflow instability becomes particularly critical
on highly swept supersonic laminar suction wings with subsonic type flow of
low wave drag. At supersonic speeds the increased wall temperature causes a
thicker laminar boundary layer with reduced kinetic energy close to the sur-
face, resulting in a correspondingly stronger crossflow at supersonic speeds,
under otherwise the same conditions. The crossflow stability limit Reynolds
uumber of a supersonic laminar boundary layer on a 65° swept wing has been
calculated in Section 1, Chapter C at M = 1.8 for the insulated wing and for
the case of radiation cooling (also see Reference 3). The simplified Dunn and
Lin stability equastions for compressible flow were used. The calculations were
repeated later with the complete Lees and Lin compressible stability equations.

For the s2me shape of the boundary layer crossflow profile the
crossflow stability iimit Reynolds number was slightly larger at M = 1.8, as
compared with incor;ressible flow. At M = 1.8 the Dunn-Lin equations gave

results which .ilvsely agreed with those obtained from the more complete Lees-
Lin equafions,

The main effect of compressibility on boundary layer crossflow at
supersonic sgeeds, such ..s in the case of highly swept supersonic low drag
suction wings, is thus essentially a stronger crossflow caused by the thicker
boundary layer at supersonic speeds due to the increased temperatures close to
the surface. In contrast, the crossflow stability limit Reynolds number, at
least at moderately high Mach numbers, is little affected by compressibility.
Increased suction mass flow rates are required to avoid evccssive boundary layer
crosstlow and thus to maintain laminar flow on supersonic swept wings, as com-
pared with the case of incompressible flow.

Stuart (NPL) has shown (Reference 4) that the two disturbance equa-
tions of the laminar boundary layer in the direction tangential and normal to
the potential flow streamline in tte presence of boundary layer crossflow can
be approximated by a single disturbance equation in the direction of the most
critical d.sturbance wave fronts. These most critical disturbance waves are
usually oriented at a small angle to the direction of the local potential flow.
The question then arises concerning the angie between the most critical cross-
flow disturbance waves and the local potential flow and the variation of the
crossflow stability limit Reynolds number with this angle. Chapter D of
Section I 1also Reference 5) presents results of crossflow stability calcula-
tions when the angle between the boundary layer disturbance waves and the
potential flow direction is varied. A boundary layer crossflow profile in the
rear part of a swept laminar suction wing was investigated. The disturbance
equation for the resultant boundary layer flow in the direction normal to the
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SUMMARY (continued)

disturbance wave fronts was integrated as in References 6 and 7. The [owest
stability limit Reynolds number for the sbove-mentioned crossflow profile
close to the trailing edge of a swept wing was obtaiuaed when the disturbance
vortices were aligned nearly parallel to the direction of the local potential
flow. The corresponding wave velocity C,. was finite, indicating the exist-
ence of traveling crossflow disturbance vortices in the rear part of a swept
laminar suction wing. For other angles between the disturbance wave fronts
and the potential flow direction, the stability limit Reynolds number in-
creased rather rapidly.

SECTION II PART 1--EXPERIMENTAL AERODYNAMIC INVESTIGATIONS AT SUEBSONIC SPEEDS

A. Investigation of Swept Laminar Suction Wing

In view of the advantages of swept wings at high subsonic
speeds, particular emphasis was given to the investigation of swept laminar
suction wings. Section II, Part 1, Chapter A describes the experimental
investigation of a 30° yawing, 12-percent-thick, symmetrical laminar suction
wing of 7-foot chord and 7-foot span in the Ames 12-foot high-pressure tunnel
(References 8, 9 and 10). Suction was appli. ' through 93 fine slots located
from 0.5-percent chord to 97-percent chord. In order to maintain fully
developed spanwise flow in the test region of the model, auxiliary suction
slots and chambers were added on both sides of the test area. Two-dimensional
flow was maintained by shaping the endplates on bothL sides of the model according
to the undisturbed streamlines around an infinitely long yawing wing of the
same cross section and sweep working in infinite flow.

In the angle of attack range between o = ~1 to +1° full chord
laminar flow was maintained at five atmospheres tunnel pressure up to a wing
chord Reynolds number R, = 28 x 10° to 29 x 10, The minimum total equivalent

wing profile drag for both wing sides at o = 1° was CDmmi = 0.00097 at
n

Ro. = 28 x 106, with a corresponding suction quantity coefficient CQopt = 0.00070.
At Reynolds numbers above Re = 28 x 106 tunnel noise, rather than tunnel turbu-
lence, seemed to contribute to the formation of turbulent bursts and a rising
drag at o's between #1°, At ¢ = +1.5 and -1.5° full chord leminar flow was
maintained up to R, = 22 x 10° and 24 x 106, respectively, and up to 21 x 106

at o = -2°, At the larger negative angles of attack the increased flow accel-
eration in the front part of the wing caused an increased boundary layer cross-
flow in this area, resulting in premature transition at higher Reynolds numbers.
At o = 1.5° the occurrence of negative pressure peaks close to the leading edge
followed by decelerated flow caused increased instability of the chordwise
component of the boundary layer flow, resulting in premature transition at
somewhat lower Reynolds numbers than at o = +1 to -1°.

At higher wing chord Reynolds numbers the chordwise suction
distributions at o = +1 to -1° for minimum drag showed relatively high suction
rates in the leading edge area, foliowed by weak suction in the region of the
flat pressure distribution and relatively strong suction in the region of the
rear pressure rise. An analysis of the boundary layer development in these
cases (Section II, Part 1, Chapter A and References 9, 10 and 11) showed that
the crossflow stability limit Reynolds number for the mos® critical disturbances
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SUMMARY (continued)

could be exceeded by approximately 80 percent at o = 0° in the region from
the leading edge to the beginning of the rear pressure rise. at a = +l and
-1° angles of attack and full chord laminar flow the crossflow stability

limit Reynolds number at the downstream end of the area of the flat pressure
distribution could be exceeded by approximately 30 percent and over 100 per-
cent, respectively. In other words, when the chordwise boundary layer flow
is less stable agains: Tollmien-Schlichting type of disturbances in the
presence of decelersted chordwise flow, velocity fluctuations in the cross-
tlow boundary layer appear to be amplified at a faster rate. Vice versa,

when the chordwise flow is strongly acceierated and thus highly stable
against Tollmien-Schlichting oscillations, the crossflow stability limit
Reynolds number can be exceeded by a larger factor without causing premature
transitior. It thus appears that the growth of the disturbances in the cross-
flow component of the boundary layer is influenced by the growth of the chord-
wise boundary layer oscillations.

Toward the downstream end of the region of the rear pressure
rise, where the chordwise component of the boundary layer flow is generally
highly stabie, the crossflow stability limit Reynolds number could be exceeded
by over 100 percent without transition in the angle ot attack range between +1°.
In local areas, such as in the region of the leading edge at o = -1° or in the
ncnsuction region between 97 percent and 100 percent chord, the crossflow sta-
biiity limit could be exceeded locally by considerably larger factors.

With the epplication of low drag suction to high subsonic
speed jet-propelled airplanes the question arises concerning the influence of
external sound, originating from the jet exhaust and the rotating components
cf the propulsion system, on the behavior of s swept laminar suction wing.
In order to answer this question, low drag suction experiments were conducted
in the Norair 7- by 10-foot low-turbulence tunnel on the above-described 30°
swept low drag suction wing in the presence of longitudinal and transverse
external sound of discrete frequencies as well as with a continuous spectrum,
These investigations are described in Section 1I, Part 1, Chapter C and in
Reference 12, Transition was caused by external sound and originated usually
in the region of the flat pressure distribution. With the wing in smooth con-
dition, i.e., with surface cavities such as static pressure orifices sealed,
and with optimum suction for minicum drag in the absence of external sound,
transition started at 120 to 126 db externaé sound pressure at wing chord
Reynolds numbers between 8 x 105 to 12 x 10%.* At R_ = 107 the corresponding
critical ratio of mean sound particle velocity u' to undisturbed velocity U,
was u'/Ugy = 1.5 x 1073, For the smooth wing the critical sound particle velo-
city ratio decreased at a somewhat alower rate than inversely proportional to
th: wing chord Reynolds number. Transition could be delayed to higher sound
pressures by raising suction as a whole or locally in the area of the flat
pressure distribution, where transition otherwise occurred. For example, at
Re = 107, the criticel sound pressure could be raised to over 132 db, corre-
sponding to (u'/Ux) pie = 3 x 10-3 to 3.5 x 10°3, by increasing suction locally

*The turbulence level of the Norair 7- by 10-foot tunnel enabled full chord
laminar flow on this swept wing up to R. = 13 x 106 without external sound.
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SUMMARY (continued)

in the region of the flat pressure distribution by 15 percent. The corresponding
increase in equivalent wing profile drag was only 5 percent of the minimum
profile drag. Raising suction as a whole required much larger increases in

total suction quantity to prevent transition at higher sound pressures.

On the swept low drag suction wing transition was usually
observed over & wide range of sound frequencies, and the variation of the
critical sound pressure for transition with frequency was relatively small for
the smooth wing. In the presence of open surface cavities such as nonsucking
open or imperfectly sealed slots and open static pressure orifices the critical
sound pressure at transition was reduced considerably to values as low as 110
db at higher sound frequencies within the frequency range for amplified Toll-
mien-Schlichting oscillations in the region of the open surface cavity in the
front part of the wing.

According to naphthalene sublimation pictures, transition in the
region of the flat pressure distribution in the presence of external sound was
usually preceded by closely spaced chordwise striaticuns, indicating the forma-
tion of chordwise disturbance vortices in the presence of external sound. (With-
out sound no striations were observed in the test Reynolds number range.) Appar-
ently, in the presence of external sound, disturbance velocities are induced in
the crossflow boundary layer by amplified boundary layer oscillations in other
directions. These disturbance velocities are large compared with the maximum
crossflow velocity. Due to the presence of the nonlinear terms in the stability
equations, vhen the disturbance velocities are relatively large the crossflow
stability limit Reynolds number is lower than the linearized stability theory
would predict, and chordwise disturbance vortices are then generated in the
presence of strong sound fields. With external sound hot wire measurements in
the region of the flat pressure distribution indeed showed amplified boundary
layer oscillations sufficiently strong to appreciably reduce the crossflow
stability limit Reynoids number.

B. Investigation of a Straight Laminar Suction Wing

In contrast to a swept laminar suction wing, where the non-
linear theory of the stability of the laminar boundary layer had to be used to
understand transition in the presence of external sound, transition on a straight
laminar suction wing could be correlated to a certain extent with the linearized
boundary layer stability theory. Section II, Part 1, Chanter C and Reference 13
describe the experimental investigation of a 4-percent-thick straight symmetri-
cal laminar suction wing of 17-foot chord at o = 0° in the Norair 7- oy 10-foot
low turbulence tunnel. Various disturbances such as external and internal
sound, standing sound waves in the suction ducts, and mechanical vibrations of
the external wing surface were superimposed. Suction w-.s appliea ~ver the whole
wing chord through a large number of fine slots. Fr_viously, the same wing had
been tested without sound in the Norair 7- by 10-foot tunnel with various chord-
wise pressure dictributions induced by inserts in the tunnel wall (Section 11,
Part 1, Chapter B and Reference 14). Full chord laminar flow up to R, = 26 x 106

and 23 x 106 was maintained without inserts and with decelerated flow induced by
inserts, respectively.

The investigation of this straight low drag sucticn wing in the
presence of sound and surface vibration was conducted without tunnel wall in-
serts. Transition was caused by external sound, surface vibrations, and internal
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SUMMARY (continued)

noise in the suction ducts. These disturbances were particularly critical
when their frequencies correlated with the freque..cies fcr amplified chord-
wise boundary layer oscillations. With optimum suction (CQ = 1.1 x 10-%)

for minimum drag in the absence of these distgrbances the critical external
sound nressure for transition at R. = 20 x 10° was as low as 108 db, corre-
sponding to a critical sound particle velocity ratio u'/Ue 2= 2.5 x 10-4,
Transition due to external and internal sound and surface vibration could

be delayed to increased disturbance levels by raising the suction quantities
primarily in the most ciitical area, where the disturbance frequencies corre-
lated with the frequercies for amplified chordwise boundary layer oscillations.

Raising Cq from 1.1 » 104 (for one wing surface) to 1.8 x 10~% at Re = 20 x 106

increased the critiral external sound pressure for transition to over 130 db,
corresponding to a critical sound particle velocity ratio u'/Uy = 2.7 x 10-3,
Relatively small increases in suction rapidly raised the stability limit
Reynolds number of the chordwise boundary layer flow and were thus highly

effective in raising the critical sound pressure level for transition to
much higher values.

With internal noise of certain discrete frequencies, origi-
nating from the suction compressor, standing sound waves of high intensity can
develop along the suction duct. In this case transition at the higher in-
ternal sound pressures (> 140 db at the peak of the standing sound waves)
originated from the location of the suction holes underneath the suction slots
in the form of turbulent wedges. The latter did not deveiop when the suction

holes and the corresponding slot were sufficiently displaced in chordwise
direction,

Internal sound in tne suction duct was generally similarly
critical with respect to transition as external sound. When external and
internal sound were equally strong, the combination of both sound sources
required a reduction of approximately three db of both sound sources to avoid
transition. When internal sound was not critical, the critical sound pressure
of the external sound was not measurably influenced by the presence of the
weaker internal sound field, and vice versa.

C. Investigation of Low Drag Suction Body of Revolution

With the drastic reduction of the friction drag on wings by
means of boundary layer suction the parasite drag of the nonlaminarized turbu-
lent fuselage, etc., becomes increasingly important. The question therefore
arises as to the basic feasibility ot full length laminar flow on three-
dimensional bodies at high length Reynold: numbers by means of boundary layer
sucticn. In order to partially answer this question, low drag suction experi-
ments were conducted on a 12-foot long modified Sears-Haack body of revolution
of fineness ratio 9 on which low drag boundery layer suction through 120 fine
slots was applied (Section 11, Part 1, Chapter D-a and Reference 15). In the
Norair 7- by 10-foot low-turbulence tunnel full length laminar flow was main-
tained at a = 0° angle of attack up to Ry = 20 x 10° length Reynolds number,
with a minimum equivalent total drag coefficient Cp = 0.00038 (based on body
wetted area). Tunnel turbulence and noise caused turbulent bursts and strongly
increasing drag above Ry = 20 x 106,
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SUMMARY (continued)

Practically full length laminar flow over most of the body
wetted area was obtained at angles of attack up to 5° at length Reynolds
numoers of 15 x 108 to 18 x 109,

At further reduced turbuleace levels, such as in the atmosphere
in flight, considerably higher length Reynolds numbers with full length laminar
flow should be feasible.

An analysis of the experimental data (Section LI, Part 1,
Chapter D-b) at o = 0° angle of attack showed e satisfactory agreewn:nt
between the exverimentally observed and ihe computed boundary layer profiles
at the end of the body, at least on both sides and the bottom. The top rake
at the end ¢ “he body often showed a transitional boundary layer profile with
a somewhat la-ger momentum loss than the bcittom and side rakes.

SECTION 11 PART 2--EXPERIMENTAL AERODYNAMIC INVESTIGATIONS AT SUPERSONIC SPEEDS

A, Investigation of Flat Plates with Suction with and without
Incident Shock Waves

The theoretical investigations of the stability of the laminar
boundary layer on a flat plate have shown a rapidly increasing stability
limit Reyrolds number at higher supersonic speeds. It should, therefore, be
possible to maintain laminar flow by means of suction up to higher length
Reynolds numbers than at subsonic speeds, as iong as boundary layer crossflow
is not critical. In order to verify this theoretical expectation, low drag
suction experiments were conducted in the Tullahoma supersonic Tunnel A on a
laminar flat suction plate, at « = 0°, with suction applied along the entire
length of the plate through 76 slots (Section II, Part 2, Chapter A-a and
Reference 16). The suction air was collected in eight suction chambers. At

= 3 full length laminar flow was maintained up to Ry = 26.4 x 106 plate length

Reynolds number, with a corresponding equivalent total drag and suction weight
flow coefficient CD = 4,50 x 10=% (including the equivalent suction drag) and

vw = 2,10 x 10'4, respect1ve1y. For comparison, the flat plate transiticn
length Reynolds number in the same tunnel is 4.C to 4.5 x 106 at M = 3, At

M = 3.5 full length laminar flow was maintained up to Ry = 21.4 x 106, and the
corresponding total drag and suction weight flow ccefficients were Cp, = 5.65

x 104 and Cy, = 2.77 x 10" 4, respectively, The maximum length Reynolas numbers
with full chord laminar flow were limited by the maximum available tunnel pres-
sure both at M = 3 and 3.5. At M = 3 and Ry = 26.4 x 10° the estimated ratio

of mean particle velocity induced by the sound from the turbulent boundary layer
of the wind tunnel test section to the undisturbed velocity is u'/Us = 1.5 to
2,0 x 1073, It is remarkable that laminar flow could be maintained up to these
Reynolds numbers in the presence of the intense sound field in the test section
of the tunnel. Thus, the experiments have verified the theoretical expectation
that laminar flow by means of suction should be feasible at supersonic speeds

up to quite high length Reynolds numbers, at least as long as boundary layer
crossflow is not critical.

Weak incident shock waves at supersonic speeds may interact with
the boundary layer of laminarized areas. The question then arises concerning
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SUMMARY (continued)

the feasibility of laminar flow in and downstream of regions of intersections
with weak incident shock waves and, in particular, about the effectiveness

ot local boundary layer suction in the region of the shock intersection ir
raising the shock strength with laminar flow. In order to answer these ques-
tions, boundary layer suction experiments were coi.ducted by the Northrop
Norair Boundary Layer Research Section and 1, Greber (MIT) on a flat plate
(designed and built by the Northrop Norair Boundary Layer Research Section)
at M= 2,0 in the supersonic tunnel of the MIT Gas Turbine Laboratory (Refer-
ences 18 and 19). An incident shock was generated by an inclined flat plate.
This shock intersected the test plate along a straight line in spanwise dire-
tion. Suction was applied in and downstream of the shock intersection region
plate leading edge to the shock intersection position varied from 500,000 to
800,000; the total plate length Reynolds number was approximately twice as
large.

The following results were obtained. At a length Reynolds
number of 500,000 (based on length from the plate leading edge to the shock
intersectior) separation started at a shock strength (pressure ratio across
shock 1in intersection region) of 1.20 without suction, as compared with a value
of 1.62 with suction (CQ was 0.0011, based on the area covered by the slots).
Full length laminar flow to the plate trailing edge was observed with slightly
stronger shocks. The Schlieren pictures showed a much thinner layer of
separated flow with suction applied in the intersection region, as compared
with the case without suction. As long as suction was effective in maintaining
full length laminar flow on the plate, the pressure rise in the shock intersec-
tion region was steep but continuous and smooth, in contiast to the pressure
rise without suction, which gensrally showed a flat pressure plateau in the
separated region upstream of transition in the shock intersection area.

At higher length Reynolds numbers the critical shock strength
with full length laminar flow decrecased. For example, at a length Reynolds
number of 00,000 (based on the plate length to the shock intersection or
1.6 x 106, based on total plate length) the critical shock strength with suc-
tion was 1.45,

In many cases oblique shock waves generated by three dimensional
bodies may intersect the laminarized surfaces of a supersonic low drag suction
airplane. The intersection of the shock with the laminarized surface is then
a straight line under an oblique angle to the main flow. The question then
arises concerning the maintenance of laminar flow by means of boundary layer
suction on surfaces which are intersected by oblique weak inciden. shock waves.
In order to answer this question, an inclined flat plate mounted normal to the
avove~-described superscnic suction plate was used in Tullahoma Tunnel A to gen-
erate a weak shock which intersected the test area of the plate at the shock
angle {Section 1I, Part 2, Chapter A-b and Reference 17). The test surface and
the suction system were the same &s during the previous plate experiments in
the supersonic Tulilahcma Tunnel A,

At M = 3 full lengcth laminar flow was maintained on the suction
plate up to the test limit of Tullahoma Tunnel A, corresponding to Ry = 26.4 x 10°
plate length Reynolds number, at shock pressure ratios of 1.10. Th2 corresponding
vaiues for equivalent total dreg and suction weight flow coefficient at M = 3
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SUMMARY (continued)

and R; = 26.4 x 106 were Cp, = 0.00050 and Gy = 0.00027, respectively. At
L t t

lower plate length Reynolds numbers the shock pressure ratio for full length
laminar flow on the plate increased; at M = 3 and Ry = 11 x 106 laminar flow
was maintained at shock pressure ratios up to l.17.

Tnese results are promising insofar as they basically prove
the feasibility of laminar flow through and downstream of regions of inter-
sections of incident shock waves at supersonic speeds by means of boundary
layer suction.

B, Investigations of a Supersonic Ogive Cylinder

In addition to supersonic low drag suction experiments on a
fiat plate and supersonic wings, an ogive of revolution with a cylindrical
afterbody was tested in the 12- by 12-inch E-1 blowdown tunnel in Tullahoma
(Section 11, Part 2, Chapter B and Reference 20). Low drag boundary layer
suction was applied through 29 suction slots connected to four individual
suction chambers., (The small size of the model did not easily permit the in-
stallation of a larger number of slots.) Full length laminar flow at M = 2,5
and 3 was mai~tained up to a length Reynolds number of 16 x 106 and 12 x 106,
respectively, The correspcnding values for the equivalent total drag and
suction weight flow coefficient (based on body wetted area) were at:

M Rpx 10-6 Cpe x 10% Cu, x 10%
2.5 15 5.1 2.0
3.0 12 6.1 1.8

The wave drag is not included in these drag figures. At higher Reynolds numbers
tunnel noise, primarily from the blowdown vaive, caused turbulent bursts and
a rapidly rising drag with Reynolds number.

C. Investigations of Swept Wings with Supersonic Leading Edges

Th2 supersonic laminar flow suction experiments discussed thus
far were concerned with two-dimensional boundary layers flowing in the direction
of the undisturbed stream. The next item to be investigated was the effect of
boundary layer crossflow at supersonic speeds. Since two different types of
potential flow fields exist on swept wings, depending on whether they are swept
ahead or aft ot the Mach cone, two separate investigetions were required.

A 36° swept wing of constant chord and a 3-percent-thick biconvex
airfoil section (perpendicular to the leading edge) was selected for investi-
gating the effects of boundary layer crossflow on a swept wing with a supersonic
leading edge (Section I1, Part 2, Chapter C-& and Reference 21). Suction
experiments were conducted at the AEDC Tunnel A on a mode! of 39 inches chord
(in flow direction) at Mach numbers between 2.5 and 3.5. Laminar flow was
maintained up to the highest tunnel pressures, resulting in maximum length
Reynolds numbers of the order of 17, 25 and 20 x 106 at Mach numbers 2.5, 3.0
and 3.5, respectively. The Reynolds numbers are defined by chord leagth and
velocity in flow direction. Two different suction systems were built for the

ASD-TDR-63-554 -xii-




L%

4

SUMMARY (continued)

model, and two separate tests were conducted to cover tne whole Mach and
Reynolds number range. The model with the narrower slots provided better
data at M = 2.5, while better data at M = 3.5 was obtained with the wider
slots. Two additional slots in front on the second suction system were re-
quired to cover the highest possible Reynolds numbers at M = 3.0 and 3.5.

The tests showed a higher sensitivity of the laminar boundary layer to local
suction quantities and slot widths tnan was observed on the previous models
without crossflow. In general, high suction was required in the front half
and low in the rear. Expressed in terms of the nondimensional inflow velocity
coefficient, f§ > 2.0 for x/c < 0.50; fg ~ 1.0 - 1.2 near the trailing edge.

Computation of the laminar boundary layer development for
such suction distributions gave values of crossflow Reynolds numbers at
which full chord laminar flow was maintained: Ry ; < 180 at 70 percent chord
and Rg | < 250 near the trailing edge seem to be adequate design numbers. It
was observed at M = 3.0 and 3.5 that further reductions in total drag were
possible by a further reduction of suction in the rear portion of the wing.
Although the boundary layer profile became unstable, the increase in wake
drag was less than the reduction in suction drag. In these cases, the
theoretical laminar crossflow Reynolds number would have been of the order
ot 350.

The location of the first slot on the 26° swept suction wing
was determined on account of the available test results on natural transi-
tion measurements, Most ot the published data were obtained on swept wings
with flat surfaces. A test program on boundary layer transition measurements
on contoured swept wings was therefore initiated (Section 1I, Part 2, Chapter
C-b and Reference 22). The model had the came cross section as the 36° swept
suction wing; its sides were cut off in such a way that sweep angles of 24
and 50° could aiso be investigated. The model of 9.45-inch chord (perpendic-
ular to the leading edge) was tested at the AEDC Tunnel E-1 at Mach numbers
between 2.5 and 5.0. The main result of these measurements was that transi-
tion was affected predominantly by the bluntness of the leading edge. The
crossflow from the swept cylindrical nose was more powerful than the crossflow
which developed from the pressure distribution over the curved surface. The
reduction of the transition Reynoluds number due to sweep followed the trend
observed in NASA experiments on blunt flat plate models.

D. Investigation of a Highly Swept Supersonic Laminar Suction
ding, Swept Behind the Mach Cone

In order to obtain the maximum benefit from the application
of low drag boundary layer suction to supersonic airplanes, it is desirable
to reduce the supersonic wave drag, particularly due to lift, along with the
reduction of the friction drag. The supersonic wave drag can be greatly
reduced by distributing the aerodynamic lift over a relatively large wing span
and, in addition, over a large length. In this respect, highly swept super-
sonic laminar suction wings with subsonic type flow over a large part of the
wing appear attractive from the standpoint of low wave drag. The question
then arises concerning the basic feasibility of ful! chord laminar flow of
subsonic type on a highly swept wing at moderately high supersonic speeds.

In order to answer this question, low drag suction experiments were conducted
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SUMMARY (continued)

in the 40- by 40-inch supersonic Tullahoma Tunnel A at M = 2.0 and 2.25 on
a 72.5° yawing cambered wing ot constant chord. These experiments are
described in Section 1I, Part 2, Chapter D and in Reference 23. The design
ot a highly swept supersonic laminar suction wing is str-ngly influenced by
boundary layer crossflow consideration, particularly in the region of the
steep rear pressure rise. Relatively strong suction must then be used in
the rear part of the wing to maintain full chord laminar flow under these
severe crossflow conditions. In order to approach area suction, which is
aerodynamically optimum, a large number of closely spaced suction slots are
required in this area of tne wing. With the small scale of the model and
the correspondingly high unit length Reynolds number, tue slot spacing
becnomes very small in the rear part of the model, and the maximum wing chord
Reynolds number with full chord laminar flow is then largely limited by the
slot spacing and the size of the model. The model was therefore designed
for wing chord Reynolds numbers between 5 and 10 x 106,

The experiments showed full chord laminar flow with a sub-
sonic type pressure distribution of zero wave drag at M = 2 and Cp = 0.065
to 0.07 up to R, = 9 x 106 wing chord Reynolds number. At M = 2,25 and
Cp 2= 0.08 full chord laminar flow was observed with zerc wave drag at Rg =
6.5 x 166, The total equivalent wing profile drag for the upper wing sur-
face at R = 8 x 109 and M = 2 was Cp, = 0.0013 (including the equivalent
suction drag). This drag is relatively high due to the high suction quanti-
ties wnich are required to avoid transition from crossflow instability. 1In
contras o the upper surface, the rear pressure rise on the lower wing
surface would be very small, and very much weaker suction should then be
adequate to raintain laminar fiow on the lower wing surface (the estimated
equivalent profile drag of the lower wing surfac- would then be equal to
approximately half of the value for the upper suriace).

A supersonic low drag suction airplane with highly swept wings
wouid most likely have tapered wings with considerably reduced wing sweep at
the wing trailing edge, with tne flow component normal to the isobars being
sonic over the whole chord or slightly supersonic toward thc trailing edge.
Wwith the reduced trailing edge sweep the crossflow in the mos:c critical area
of the rear pressure rise is then greatly alleviated, as compared with a
wing of constant chord without taper, resulting in reduced suction quantities
and further reduced wing profile drags.

E. Pressure Drop in Tubes with Compressible Laminar Flow

At supersonic speeds the pressure drop through the components
of the suction ducting system of a low drag suction airplane or model can
become large compared to the absolute pressure. Compressible flow must then
be assumed for the analysis of the pressure change in the components of the
suction ducting system such as the suction slots, holes and ducts.

In order to provide data for the compressible laminar pressure
drop in suction holes, the pressure distribution with laminar flow was meas-
ured along the inside of a circular tube of 0.244-inch inside diameter and
11.3-foot length for several inlet Mach numbers M, and reservoir pressures
p, (Section II, Part 2, Chapter E and Reference 24). The pressure ratio P/Py
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SUMMARY (continued) i

is presented versus the nondimensional tube length x/RRR for various inlet
Mach numbers. Ry = UoR/v, 18 the Reynolds number based on tube radius R and
the mean velocity U, at the tube inlet. With increasing values of M, and
x/RRR the density and static pressure decreased rapidly until choking occurred
at pressures p > (0,20 to 0.25)pk, which are considerably lower than for one-
dimensionai tube flow. Boundary layer measurements showed supersonic flow

in the center and subsonic flow toward the wall of the tube when choking oc-
curred, with an average Mach number of approximately one.

The maximum tube length Reynolds number with laminar inlet
flow was Uox/uyo = 26.1 x 106 at M, = 0.430.
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CHAPTER A. CURRENT STATUS OF RESONANCE THEORY OF TRANSITION

G. S. Raetz

(A) Abstract

An improved form of the resonance theory of transition,
first proposed by the author in 1959, is described. For simplicity, mainly
a boundery layer generated on a flat wall by an unaccelerated flow of an
incompressible fluid is considered. Aiso, as the conditions causing transi-
tion, mostly simple irregularities at the wall surface and in the adjoining
flow are assumed. The main features of the resulting motion are deduced
from the continuity and Navier-Stokes equations.

In this deduction, the whole motion first is decomposed into
a basic flow, chosen as the laminar flow occurring in the absence of the
boundary irregularities, and a sequence of perturbation flows. The basic
flow satisfies a aonlinear but solvable differential system, whereas the
perturbation flows all satisfy inhomogeneous linear differential systems.
The first<perturbation flow, having just homogeneous differential equations,
is determined solely by the boundary values representing the irregularities
at the wall surface and in the adjoining flow. All higher-perturbation flows,
having just trivial boundary values, are determined solely and recursively
from lower-perturbation flows by inhomogeneous terms called driving functions
in their differential equations. Thereby, the whole nonlinear disturbance
motion is related directly and completely to the boundary irregularities
themselves., Subsequently, each perturbation flow is decomposed into a general
spectrum of Fourier components with aperiodically varying coefficients.

According to the theory, the main features of transition
and also of turbulence are due to partial resonances of some Fourier components
with the driving functions. The downstream growths of the coefficients of these
Fourier components include variations like the exponential growths of ordinary
linear stability theory and, more importantly, other variations which can be
much faster and larger. As a result, the resonance theory seems to explain

many properties of transition beyond the scope of linear theory and various
cther concepts.

Furthermore, the theory appears to offer a possible way of
estimating transition motions and related phenomena, including the actual
introduction of disturbances by boundary irregularities and perhaps certain
properties of turbulence. Some aspects of such calculations as well as some
generalizations of the theory to other flows are discussed.

(B) Principal Notation

a: spacewise fundamental frequency
aﬁ spacewise harmonic frequency

bk spacewise growth factor

c phase velocity

Manuscript released by the authors March 1964 for

publication as an ASD Technical Documentary Report.
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(B) Principal Notation (continued)

ck

of

()

®

= rr

jk

C i

timewise fundamental frequency
timewise harmonic frequency

bilinear norm component

driving tensor component

resonance coefficient

unit imaginary number

unit outward normal component

pressure

pressure (in adjoining flow)

adjoint pressure

adjoint velocity component

time

velocity component

velocity component (at wall surface)
velocity component {in acjoining flow)
Cartesian coordinate

Cartesian coordinate (at well surface)
Cartesian coordinate (in adjoining flow)

distance from wall surface

principal frequency
frictional frequency
normal frequency

unit tensor component
perturbation parameter

adjoint velocity gradient component
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(B) Principal Notation (continued)

njk adjoint stress balance component

o viscosity (shearing)

gjk adjoint momentum gradient component
P density

“ﬁk velocity product component

'jk velocity gradient component

“ﬁk stress balance component

Ay spacewise complex frequency

D transition domain

A phase function

G growth function (initial oc driving)
HT growth function (resonance)

J: integration constant

kT resonance kernal

p° pressure (basic flow)

Q° pressure (adjoining basic flow)

R Reynolds number (local)

U? velocity component (basic flow)

W? velocity component (adjoining basic flow)
A reference length

X reference velocity

Subscripts*:

j, k, my, n tenso: component indices

*When the same index appears twice in a subscript, a summation of terms
over the range of that index always is implied.
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Subscripts: icontinued)

K co-variant derivative* (with respect to x)
,mn co-variant derivative* (with respect to x5 and xp)
n& partial derivative (with respect to t)
Superscripts:

o harmonic index (injecticn flow)

) harmonic index (fluctuation flow)

Y harmonic index (resonance flow)

® amplitude coefficient (initial)

A amplitude coefficient (resonance)

Vy Ui perturbation component indices

O, Ox harmonic component indices

T proper solution number

Miscellanea:

dlx_ ) volume differential

o( ) order of magnitude

! complex conjugate value

A

() dimensionless value

) fluctuation flow quantity

() injection flow quantity

(C) 1Introduction

In the development and application of laminar flow control

techniqucs, as well as in many other technical fields, a principal handicap
always has been the lack of an adequate theory of boundary layer transition.

In fart, in all laminar flow control projects undertaken so far, this obstacle
has been overcome only by essentially empirical procedures, such as extrapclating
experimental transition data by use of ordinary line.r stability>theory. Thus,
notwithstarding the notable success attained in some of these projects, the

actual mechanism of transition never has been fully understood, and progress
has been hindered accordingly.

*Identical to partial derivative (in Cartesian coordin. es)
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(C) Introduction (continued)

In an attempt to orovide an adequate understanding and thereby to
lay a fcundation for greater progress in the future, the resonance theory of
transitior, was conceived and developed. The original form of this theory first
was presented by Raetz (Reference 1). Later, it was described briefly at the
Tenth International Congress of Applied Mechanics by Stuart (Reference 53).
Also, a feature of this form needing some clarification was pointed out at a
meeting of the American Physical Society by Benney and Lin (Reference 27). At
present, a substantially improved and extended form of the theory, believed to
be useful as a basis for analyzing and predicting transition phenomena and for
calculating some transition and turbulence motions as well, has been evolved.
The basic elements of this form of the theory are explained here.

To simplify the analysis as much as feasible, just a relatively
simple boundary layer development is examined in detail. Specifically, except
for some generalizations indicated later, the boundary layer is assumed to be
generated on a flat wall by an unaccelerated flow of an incompressible fluid.
Thus, without irregularities at the wall surface and in the adjoining flow, the
well-known Blasius laminar boundary layer would exist over the entire wall. To
include elementary conditions that can cause transition, a weak simple injection
of fluid through the wall surface and a weak simple fluctuation of the adjoining
flow are assumed to occur. Otherwise, the wall surface is regarded as completely
smooth, and the mean flow iteelf is regarded as uncurved and as parallel to the
wall except for a slight deviation due to the boundary layer growth. For such
conditions, a Cartesian coordinate system along with a Cartesian tensor notation
is satisfactory and therefore is used, and a major boundary value problem associ-
ated with a rough wall is avoided.

In the analysis, a basic technique is to decompose each unknown
(such as the pressure, velocity, or stress) into simple elements which, in general,
can be investigated and calculated separately and relatively easily. Thus, after
decomposing each unknown into its tensor components, each tensor component is
decomposed into a basic component (chosen as the tensor component for completely
laminar flow) and a sequence of perturbation components, and then each perturba-
tion component is decomposed into a multi-dimensional spectrum cf Fourier com-
ponents (containing a mean component as well as oscillation componrents). To
adequately cope with a nonlinearity of the problem, each Fourier component is
represented by a product of a periadic phase function and an aperiodic Fourier
coefficient which in turn is represented by a product of a growth function and
an amplitude coefficient. The growth function includes any rapid variation along
the wall surface, while the amplitude coefficient includes the rapid variation
normal to that surface. Eventually, in the actual calculations, the amplitude
coefficient in an approximate form would be decomposed into fundamental solutions
of an ordinary linear differential system. The whole motion itself is constructed
merely by recomposing the elements thus found. Although such motion often may
appear to be exceptionally complicated, relatively few of the many possible ele-
ments usually need to be investigated and calculated. Due to the number of
decompositions, though, the notation is tedious and must be carefully treated.

In a corresponding manner, the differential system for the whole
motion, which includes the nonlinear Navier-Stokes equations, is decomposed into
a basic system (identical to the nonlinear system for completely laminar flow)
and a sequence of perturbation systems (all linear), and then each perturbation
system is decomposed into a multi-dimensional spectrum of Fourier systems. In
the first-perturbation systems, the differential equations are a.l homogeneous,
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(C)  Introduction (continued)

whereas in the higher-perturbation systems, the differential equations contain
driving functions (inhomogeneous terms) that depend solely on products of lower-
perturbation components. Consequently, the first-perturbation components are
determined completely by the boundary values representing the injection at the
wall surface and the fluctuation of the adjoining flow, and all higher-perturta-
tion components are determined completeiy by their driving functicns and thus
recursively from lower-perturbation components. Thereby, all Fourier components
are determined individually and explicitly in a sequence starting from the Fourier
spectra of the boundary irregularities themselves. In these determinations, by
extracting the phase and growth functions, the Fourier systems are reduced to
amplitude coefficient systems, which in turn are approximated with sufficient
accuracy by ordinary linear differential systems that are similar or, in many
cases, identical to the welleknown Orr-Sommerfeld systea.

According to the resonance theory, the main features of transition
and also of turbulence are due to partial resonances of some Fourier components
with their driving functions. For example, two Fourier components, such as one
from the fluid injection distribution and one from the adjoining flow fluctua-
tion, may form driving functions having space and time frequencies which, over
some part of the wall, happen to almost coincide with the natural frequencies of
the driven Fourier component. 1In this case, over that part of the wall, the
latter component will grow rapidly and greatly with downstream distance, although
elsewhere it usually will grow or decay only slowly. Such variations are included
in the applicable growth function, which therefore is especially important in the
analysis. Likewise, over other parts of the wall, other partial resonances from
other pairs of Fourier components of the same or other perturbations may occur.
In the whole process, the mean components of some perturbations can become large,
causing a large distortion of the whole mean flow, and certain oscillation compo-
nents of various perturbations can become significant, producing a variety of
oscillatory phenomena like those observad at transition and in turbulence. Con-
versely, over a part of the wall, for certain boundary values, motions resembling
those predicted by ordinary linear stability theory can appear, and over other
parts of the wall, motions resembling those of other theories evidently can occur
insofar as such theories are valid. Thus, it appesrs that many correlations with
experimental observations on transition, as well az with the verifiable parts of
related theories, eventually can be established.

In more gerieral boundary layers, various special phenomena can
be caused by similar resonances. For example, when the wall surface is appropri-
ately curved, G¥rtler vortices can be produced, and when the adjoining flow
is sufficiently curved, crossflow vortices can be generated. In the resonance
regions, tae growth of these vortices with downstream distance will differ sub-
stantially from that predicted by ordinary linear stability theory, perhaps
explaining a discrepancy between that theory and experiment. Also, the effect
of wall vibration and external sound on the bcundary layer developmen: apparently
can be explained satisfactorily by partial resonances. Moreover, it appears
that the influence of wall roughness on transition and turbulence can be fore-
cast once a suiteble technique for handling an associated linear boundary-value
problem is developed. Furthermore, analogous resonances can occur in compressi=-
ble flows, probably explaining the principal features of transition at subsonic,
supersonic, and even hypersonic speeds. Indeed, in still more general flows,
important features of a variety of critical phenomena -- such as the combustion
instability of rocket motors, the plasme instability of thermonuclear power
devices, and the general circulation of the atmosphere -- probably can be
explained and analyzed in terms of similar partial resonances.




(C, Introduction (continued)

Due to the large number of other investigations of transition
that have been and are being conducted, a proper resume' of other transition
theories delineating between seemingly valid and invalii aspects would be too
lengthy to be practical here. However, some of the current theories and related
work, as well as references to earlier research, are included in the papers listed
as references. Needless to say, the present theory is indebted to these and other
theories and investigations for some techniques and details and also for some hints
as to promising and unpromising directions of seerch. Also, in developing this
theory, the suthor perscnally was aided by many discussions with Dr. Werner
Pfenninger. This ass.stanca is acknowledged with gratitude.

(D) Differential Systems

To adequately explain the theory, several differential systems and
some special Quantities and concepts first must be introduced. The inherent com-

pPlexity of transition seems to preclude a satisfactory simpler approach, at least
in this preliminary exposition,

(1) General System

To represent the transition region, Cartesian coordinates
X (k =1,2,3) are used, the boundary layer being generated on a wall surface

at x3 = 0 by an adjoiring rlow at x3 = =« When necessary to be more specific,
the whole mean flow is regarded as in the positive xj-direction. The velocity
components uy (J = 1,2,3) and the pressure p vary with the coordinates and also

the time -, whereas the density p and the viscosity u are constants. Co-variant

derivatives, which in these coordinates are identical to partial derivatives, are

denoted by a subscript comma followed by the subscript indices associated with

the varied coordinates; for example, Uj,k = aujlaxk and u =3 u;/axmaxn

(m,n = 1,2,3)., Similarly, timewise partial derivatives are denoted by a sub-

script comma followed by a subscript letter t for each differentiation; for

example, u ,t = dus3/3dt. Wherever the same index appears twice in a subscript,

a summation of terms over the range of that index always is implied; for example,
+ up 2 +u3 3, (This convention, though, is not extended to super-

sgr pts. } ’

In this notation, the differential equations of the whole
motion, which include the incompressible continuity and Navier-Stokes equatiors,
usually would be expressed in a form such as

Uy, 3 = 0

pluy ¢ + uj kUk) = -P,§ * wuj Kk (1)

where j and k range over 1,2,3 (see, for example, Reference25). Here, hovever,
another form is more convenient and therefore is used. Thus, to confine the
nonlinearity to a simple algebraic relation, the velocity product components
¢jk = “j“k are introduced, and to allow a first-order system the velocity




(1) General System (continued)

gradient components *jk = uy,
tions later, the stress balance components wjk = chk + ijk - u(tjk + ij) are
used, where the unit tensor components bjk equal 1 1f § = k but equal 0 if j ¢ k.
Thus, the equations to be considered are

k are included. Also, to arrive at shorter equa-

Cjk = Ujuk
Pik T Y3,k
wjk = chk + ijk - U(ﬁjk + ¢kj) (2)
.. =0
1]

Puje * %,k = 0

where j,k = 1,2,3. Equations (1) are regained merely by eliminating Cjkr ¥ iko
and ij.

As will become apparent, several boundary conditions for
these equations already are implied by the type of motion considered. Conse-
quertly, a3 boundary values, just the wall surface velocity components vj

(j =1,2,3) along with the adjoining flow velocity components vj (j =1,2,3)
and the adjoining flow pressure q are needed here. Thus, identifying coordinates

at the wall surface and in the adjoining flow by the superscripts o and w,
respectively, the boundary conditions to be imposed explicitly are

o -
Uj(xk’t) =v

(3)

n
)

©
uj(xk,t)
p(x:,t) =q

where j,k = 1,2,3 and Vis Wy, q are given functions. As is essential, wj and q

are to satisfy Equations (1) or (2) within the adjoining flow itself.

(2) Perturbation Systems

To obtain a sequence of differential systems that can be
solved in a convenient manner, all dependent variables are represented by
perturbation series in a perturbation parameter ¢, which is stipulated later.
Perturbation coefficients are distinguished by the superscript v (or v,) alone
whereas parameter powers are indicated by parentheses with the superscript vy
attached. For example, the velocity comporients and the pressure are to be
represented as

v v
“j =g uj(e)

(4)
~® V.V
p=1%yp (2)




(2) Perturbation Systems (continued)

ar Substituting such series and equating coefficients of equal powers of €, Equations
(2) and (3) decompose into the perturbation differential equations

Vv V V=Vx Vk
mjk = Zo Uj Uk

-'rv =
ik Y5,k

= v v SV v
D(Ejk +p bjk = U-(.'jk + 'kj) (5)

€
b
=
L

v, =0

v

v
PUie ® Sk T

and the perturbation toundary conditions

v o _, _ .V
uj (xk,t) = vj

u‘j’ (x:,t) = w‘j’ (6)
. pv (x:,t) = qv

where y = 0,1,2,...,0 and vg, w?, qY are given. These systems are to be solved,

insofar as is necessary, separately but recursively (in the same order as their
perturbation orders). In most cases, based on available evidence, the resulting
series should converge satisfactorily. Otherwise, in exceptional cases not
covered here, incorporation of some technique for summing slowly converging or

diverging series (see, for example, References 35 and 36) might be desirable or
necessary¥,

The singular perturbation component for v = 0, called the
basic flow, is chosen to be the steady laminar flow that would occur if the wall
surface irregularity and the adjoining flow fluctuation were absent. Thus,
replacing lower by upper case letters for emphasis, the basic flow system is

o 0,,0
ij = UjUk
o o

(o] [o] (o] [o] [o]
= 5d, + P - ulY® +¥>2 ) (7
Ui = P¥y S5 = H K )
.0

{jj 0

o

e,k ® 0

a
h

*For example, a truly parallei flow, such as an asymptotic suction boundary
layer, may entail questionable convergence.
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(2) Perturbation Systems (continued)

and
o, o
Uj(xk.t) =0
o, ® o
Uj(xk,t) = Wj (8)
POlxp,t) = Q°

where WS and Q° are given constants, WO = 0, and WS need not be given. (WS is
1 g 2 3 3

ascertainable by substituting H?, wg, and Q° into Equations (7).) Due to the
quadratic terms in the first equation, the basic flow system, unlike the other
perturbation systems, is nonlinear. However, upon eliminating ij' ij, and
qu, Equations (7) reduce to the steady continuity and Navier-Stokes equatiocns,
which can be approximated satisfactorily by steady laminar boundary layer equa-

tions. In fact, as explained later, the resuiting system yields merely the
well-known Blasius laminar boundary layer as the basic flow.

After ascertaining the basic flow, the perturbation compo-
1 i, obtained from the differential equations

nent for vy

+ U

1
c

u

Yy
it
e 0O
R -

= 1 1 1 1
»l)jk = p@jk +p 6jk = u(WJk + “'lkj) (9)

1 £
A T N

which are both linear and homogeneous. Thus, this component is determined solely
by the boundary values representing the boundary irregularities. In fact, it is
the sum of two simpler elements: one determined by the fluid injection distri-
bution, called the injection flow and distinguished by an underline; and the other
determined by the adjoining flow fluctuation, called the fluctuation flow and dis-
tinguished by an overline. In most of the analysis, just normalized injection

and fluctuation flows are r~quired, the appropriate boundary conditions therefore
being

T = vl
gj(xk,t) !j

LT 6y =
C¥ Xot) = 0 (10)
plix:,t) =0

-10-




(2) Fertyrbation Systems (continued)
and

-1, © -
uj(xk,t) 0

Aol o) o (11)
Uj(Xk,t) "j 11

Flixg,t) = gl

where g}, ﬁ;, El are normalized boundary values ascertained from the boundary

irregularities. As is necessary, w and El are to satisfy Equations (9) with
U? replaced by H?. Where required, the actual injection or fluctuation flcw is

obtained merely by multiplying the normalized flow by an injection parameter
¢ or a fluctuation parameter G, respectively. Along with this normalization,
the perturbation parameter itself is chosen as

172
e = (Es;) (12)

so that, as is appropriate, ¢ depends solely on the magnitudes of the boundary
irregularities. Correspondingly, the whole perturbation component {s normalized
by dividing its actual quantities by ¢.

With all boundary irregularities thus taken into account,
each higher perturbation component, for vy 2 2, is determined solely by a driving
tensor with the components

v-1

ujv-v*ui* (13)

which in turn are detormined solely by lower perturbation components. Thus, the
higher perturbation components are obtained recursively using this relation
together with the inhomogeneous but linear differential equations

v e o v v

%3 j ik
W;k o “g,k
w;k = pmgk + puéjk - u(wgk + wij) (14)
TR

Vv v
puj e * Wik,k =0

and the trivial boundary conditions
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(2) FPerturbation Systems (continued)

v

uJ(xﬁ,t) =0
) oo {
ui(Xk’t) = 0 ‘ls)
J
pv(x:,t) =0

where , = 2,3,...,=. Just normalized perturbation components must be and there-
fore are determined from this system, the recursive relationship yielding such
components when just normalized first perturbatjon quantities are used in Equa-
tion (13). Where necessary, each actual perturbation component is obtained by
multiplying the normalized component by a power of ¢, this power being equal

to the perturbation order.

(3) Fourier Coefficient Systems

To adequately express the intricate motions of transition,
each quantity of each perturbation component except the basic flow is repre-
sented by a complex Fourier series which extends over each coordinate and the
time and also has aperiodically varying coefficients. The spacewise fundamental
frequencies aﬁ (k = 1,2,3) and the timewise fundamental frequency c* are deter-

mined solely by the boundary irregularities. Specifically, these frequencies
have the largest real values that epable an adequate representation of both the
fiuid injection distribution and the adjoining flow fluctuation. However, to
encompass nonperiodic as well as perfodic boundary irregularities, these fre-
quencies may approach zero as a limit, the Fourier series then becoming Fourier

integrals. Introducing a harmonic index ¢ with four components (cl, cz, 03, )
. which each range over 0,%#1,+2,...,t», the spacewise and timewise harmonic fre-

* A
. quencies are ag = akok (k = 1,2,3) and ¢ = c*ca, respectively. Designating

i the value {0,0,0,0) by 0 and the value (-cl,-cz,-c3,-ca) by -c, these fre-
. quencies obey the relations

- o _
ay = 0 ¢c =0
a;c = -ai ¢ %= ¢

- OO G ol
ag o ag* = ay L AP

Each term of each Fourier series contains the phase function

0 = exp i(aﬁxk + ¢ t) (16)




r

(3) Fourier Coeffjcient Systems (continued)

with the important properties

£° =1
A
EC)"‘C*EC* - s
and
Efk = ia:EO E?t » icch

where 1 is the unit imaginary number and the overscript ~ denotes the complex
conjugate value. Although timewise oscfllations necessarily are encompassed,
just spacewise veriations of the coefficisnts themselves must be considered

here (since the boundary layer is "equilibrated” in time). Thus, each coeffi-
cient {is,at most, an aperiodic complex function of the coordinates alone. For
example, the velocity components and the pressure of each perturbation component
except the basic flow are represented as

Yy . vo 3 (17)

where the summation extends over the whole range of each harmonic index component.
Finally, since gl! physical quantities are real, the two members of each pair of
coefficients for each pair of values to0 necesgarily are compiex conjugates. For

example, since p” = p¥,

. E 31\”"080

~Vy=~C

whence, equating coefficients of equal phaze functions, pvo = p . (Super~
script commas, unlike subscript commas, wmersly separate indices as necessary.)

In actual boundary layer developments, the boundary layer
values at the wall surface and in the adjoining flow generally contain large
spectra of influential Fourier components. In fact, even f he elementary
boundary irregularities concerned here, the non-trivial bounuary values of the
first-perturbation component ordinarily would be

-13-




(3) Fourier Coefficient Systems (continued)

1 lo a
Y=Ly E

1 lo_o
ﬁj < vj E (18)
ql =T qlcEc

where each component of o may range over many integers and the Fourier coeffi-
cients v;c’ H;O, q10 may be aperindic functions of the coordinates. However,
in the analysis itself, many fundamental details can be explained adequately
and simply in terms of just single Fourier components of relatively elementary
types. Therefore, for the present, oniy such spectra are considered, generali-
zations to other spectra being discussed later. Specifically, except when other-
wise indicated, the fluid injection distribution .s to include just an exactly
simple-harmonic stationary wave, distinguished by using the superscript lg in
place of other identification; and the adjoining flow fluctuation is to include
just a nearly simple-harmonic traveling wave propagated parallel to the wall,
distinguished by using the superscript 18 in place of other identification. For

such spectra, the whole motions at the wali surface and in the adjoining flow
are

lo la la ~1agla

vj = € (vJ
o 15 1. 1p ~lo-lpe
= W, + .
wj 3 € (wJ E + "j E ) (19)

o 1 1s1 T
q=Q +e°(q°Ea+‘cIJBE’°)

where a3a = cla = a;e = 0 and v}a are normalized constants while w;p and qlp
are normalized weak aperiodic functions of the coordinates. For definiteness,

the orders of magnitude of W}, Q and v}a, }D, q13 are taken as unity--both

ela and 51;, along with ¢ = (e10 13)1/2’ therefore being much smaller than unity

(since only weak boundary irregularities are involved).

For the boundary values under consideration, the ncrmalized
injection and fluctuation flows, being sclutions of ihomogeneously linear diff-
erential equations, can be represented by two-term series such as

lo 1 ~lg ~
u% =y, E « + u%o Ela
=1 J ]
1 la_la ~la~lo (20)
p =p L +p E

-lbe




(3) Foyrier Coefficient Systems (continued)

and
-1 1 18 1§19
Uj sz *UjE
(21)

3! = pl8E13 , 312718

respectively. Hence, substituting such expressions into Equations (9) and
equating coefficients of equs. phase functions, a single Fourier coefficient
system for each flow i{s obtained. For the injection flow, the differential
equations are

la lg,.0 o lo
q:jk = uj Uk + Ujuk
lo lo la R la
Vil T 1Yy B T Yy
lo la la Lo la
la
= 0
’33

ipclau;a + 1u§ﬁhia + “;:.k = 0

1

with a%a = ¢ %= 0., For the fluctuation flovw, the differentiel equations are

the same as Equations (22) except with o replaced by 3 and with ags = 0, The
applicable boundary conditions are
u;a(xg) = v;a
uj%) = 0 (23)
pla(x:) =0
and
uiBa) = 0
u;a(x:) = w;B (24)
pls(xm) = qlB

1 1 1
where vja, wjp, q 8 are coefficients from Equations (19). Whereas v}a are to be

1p 12
constants, wjb and q ' are to be weak aperiodic functions of the coordinates

«]5a




(3) Fourier Coefficient Systems (continued)

satisfying Equations (22) with U; replaced by H?. The whole pertur-

bation component for y = ! can be represented by four-term series such as

] = WP ¢ TREN ¢ 1PwPES 4 T3ET
(25)
epl & €lc:r(pltle_:la . B—la-gla) . elp(plaslg . B—lazle)

obtained com Equations (20) and (21). Here, as well as for the more general
boundary values, this perturbation component does not contain a mean Fourier

component (with the phase function E°). I1f the boundary irregularities con-
tained a mean Fourier component, it could and therefore would be included in
the boundary values of the basic flow itseif, always leaving the first-pertur-
bation spectra without any mean component.

Substituting general Fourier series into Equations (13) and
equating coefficients of equal phase functions, the general Fourier coefficient
of the driving tensors is obtained as

£l = I} (o uTIR OOy e O (26)

where v = 2,3,...,» and each component of ¢ and o, may range over 0,zl,£2,...,%x.

Thus, each such coefficient, besides belonging to a generally large spectrum,
involves a generally large sum of pro”icts of quantities from lower perturbation
components. However, the actual value of these coefficients, being dependent
on products of small actual quantities, usually are very small. In fact, in
most boundary layers of practical interest, the Fourier components of the driv-
ing tensors can significantly affect the motion only at relatively infrequent
conditiors. These exceptional conditions, as elucidated later, are those allow-
ing strong partial resonances between the driving and the driven Fourier compo-
nents over long str:tches of the bounda 'y layer. Consequently, due to this for-
tunate feature, just a relatively small number of the Fourier coefficients of
the driving tensors must be considered. Furthermore, in the sum for each of
these coefficients, as will become evident, merely a few exceptional terms con-
tribute significantly to the partial resonance and therefore must be retained.
In the particular boundary layer concerned here, wherein the first perturbation
component has just finite spectra, the driving tensor components also have just
finite spectra and the sums are finite as well. Nevertheless, as will be explained,
relatively few of even these coefficients and terms need to be analyzed.

In particular, the driving tensor for v = 2 has the components

fjk ujuk

and therefore, using Equations (25), just the Fourier components in the expression

-16-




(3) Fourier Coeffi ient Systems (continued,

la, la_la -la_-la 13, lp_lc -15 .-13
fjk = rC (Uj e * Uj L ) +* ¢ (Uj E *+ Uj E )]
la. lo la -la -lo 1 18 13 -1p -13
x [ (uk E « uy g )+ (uk E- vy E )

Thus, in this case, each driving tensor component has only five distinct Fourier
components, these being one real mean component with the phase function E° and

four complex oscillation components with the phase functions ElaEla EléEl;,

’
o )
51“£‘°. and £lo/cls, Moreover, due to the restricted range of the natural fre-

quencies of the driven Fourier components (see Part (G-3), just one of these
osciilation components has a possibility of yielding a significant partial
resonance, this component being the one with the phase function elaglc or
Elalﬁl;, depending on the particular harmonic frequencies involved. For defi-

niteness, this exceptional component, to be distinguished by the superscript
2., presently is assumed to have just the phase function

E<Y = g70gtF
with the harmonic frequencies
2y la 1o

ak ﬁk + ak

(27
2\ lo | 5] B0
c -

where k = 1,2,3, Hence, for y = 2, just the mean components as evaluated from
merely the dominant terms of the relations

la 1;f2 0. lx la( lo -la u-luula)
k7€ 5 % 3%k
R 1, =14 ey
* (uj K uj k ®) (28)
and just the oscillation components
2 la 1 c la
j; j U T Uy Yk (29)

must be considered further. 1In fact, for this particular value of vy, as will
be explained, even the mean components usually should be negligible.

Similarly, the driving tensor for y = 3 has the components

3 2 1

£ . 1 2 .
ik ujuk ujuk

-17-




(3) Fourier Coefficient Systems (continued)

of which relatively few Fourier components are important. In this case, a mean
component is not included, the same being true for all other odd values of v.
Any oscillation component of importance, as will become apparent, has a phase

function E3Y which is the product or quotient of E2Y with either gl or Els.

As in the case for y = 2. just the terms in the coefficient of E3Y must be kept.
Moreover, the driving tensor for v = 4 has the components

of which few Fourier components must be retained. In this case, a mean component
component is involved, as is true for all other even values of y. Also, any

oscillation component of importance now has a phase function E‘W composed of the
2 3
square of E Y or a combination of E3Y with either Ela or Elp. Hence, all terms

except those in the coefficients of E® and E‘w car be omitted. Finally, the
driving tensors for the higher values of : car be simplified in the same way.

Consequently, using the superscript A to denote the relevant
lower perturbation quantities and otherwise replacing lower by upper case letters
for emphasis, the mean Fourier coefficients of the perturbation components for
v=2,4,...,0 8are obtained from the mean driving coefficients

v -, bO~b
Fik = ujug (30)

and the differential equations

Q;k = U’quz ’ u;’u,z + F';'k

v‘j’k = Ulj”k

:z;'k = p¢;’k * P”éjk - u(v;'k + Yl‘:j) (31)
Y;j =0

Qik,k = O

with the boundary conditions

Uj(xj) = 0

UV(xe) = 0

j X‘( had (32)
v, @ _

P (xk) = 0

-18-




(3) Fourjer Coefficient Systems (continued)

Eventually, the whole mean motion could be expressed in perturbation series such
as

U, = 0%« . (U’ TJ’J?)(e)"

3 i

P=P°+ v (PV+PV)()Y

(33)

where v = 2,4,...,o. However, in the boundary layer concerned here, besides the
singular terms for v = O, probably jus’ the terms for v = 4 will be large enough
to merit consideration within the transition region,

Likewise, using the superscripts § and - to denote the rele-
vant lower perturbation quantities, the oscillation Fourier coefficients of tle
perturbation components for y = 2,3,...,= are obtained from the oscillation driv-
ing coefficients

' R /)
f;: = u;ui + uguk (34)

and the differential equations

vY _ v 0 o VY Y

Cjk = Uj Uk + Ujuk + tjk

LA - s VY vy " vy

LI T S N

vy _ A PA7 VY U A

'l'jk = o"’jk +p 5jk - u,(u,jk + 'kj) (35)
vy

L. =0

i3

Vy vy . VY vy vy
ipc uj + Lujak + «jk, k =0

with the boundary conditions

\)" o
uj (x() =0
uj (x))) = 0 (36)
va(x:) =0

Ultimately, using the superscript | to denote the dominant terms of each pertur-
bation component, the whole oscillatory motion, distinguished by the superscript
*x, could be expressed in perturbation series such as

1" '-~'r‘ +
e s WEY « T E 0
J j
. (17)

p

w (pVLEY « BYUEVI ) ()Y
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(3) Fourier Coefficient Systems (continued)

where vy = 1,2,3,...,=. Here, however, probably just some of the terms for

v = 2,3,4 will be large enough to be essential in these series. When the
boundary irregularitics include more Fourier components, the resulting motion
is substantially more intricate. This property, rather than the higher per-
turbation components, probably accounts for much of the complicated appcarance
of most actual transitions. In some boundary layer developments, though, a few
higher perturbation components may be significant. Also, such components may
become important downstream of transition.

(4) Amplitude Coefficient Systems

Although many rapid variations in the form of the phase
functions already have been scparated from the original quantities, other rapid
variations in the form of special growth functions later will be extracted Lrom
the rourier coefficients themselves. For this purpose, various quantities called
the amplitude coefficients, which in the x| and x) directions vary as slowly as
tne basic {low itseli, are needed. These coefficients now are defined by intro-
ducing their governing differential systems. zventually, using approximations
analogous to the conventional boundary layer assumptione, their systems will be
reduced to dimensioniess ordinary differential systems with the dimensionless
x3-coordinate as the independent variable. These approximate systems encompass

the well-known Crr-Sommerfeld equation and can be solved satisfactorily by a
technique that would be suitable for accurately integrating that equation.

Thus, the initial amplitude coefficients, denoted by the
superscript », are de{ined as the solutions of the homogeneously linear differ-
ential equations

) - o
ik ik
o . o n o

8 _ »v -~ V‘R ( v, o ‘V, )
Yik T 973k TP Sik T =tk TRk (38)
41
."‘ = O
‘1)
4

H HU

] Moo _
1pcC UJ + iJ,JkAk + “ij,k =0

and the non-trivial boundary conditions

u( o) ¥

u,(x, ) = v,

j ok j
K, > v

uj(xk) = wj (39)
W, @ ®

) (xk) = q
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(4) Amplitude Coefficjent Systems (continued)

where the parameter e 15 a real congtant but the parameters A; and the boundary
values v?, w¥, q* are complex consiants., These coefficients {nclude the injec~

tion amplitude coefficients, for which AY = ¢t = 0 and w? = g% = 0, and the

fluctuation amplitude coefficients, for which A; = 0 and v; = 0. In the former

case v; can be arbitrary, but in the latter case w? and q" must satisfy Equa-

tions (38) with U? replaced by u?. In both cases, just normalized boundary

values with an order of magnitude of unity sve considered.

Next, the resonance amplitude coefficients, denoted by the
superscript A, are defined as the solutions of the homogeneously linear differ-
ential equations

R
-.jk

A0 o )
ujUk + Uj"k

L haa A
e = gAY Yk

A A A A A
A

e, =0

i3

‘“ "\ ‘A A X .
1OC Uj + iwjkAk + {ij’k =0

and the trivial boundary conditions

A, o
uj(x) = 0 (61)
px(xﬁ) =0

A A

vhere the parameter c¢” is a real constant but the parameters Ak necessarily are
weak aperiodic complex functions of Xy and Xqe In the dimensionless approximate
system deduced later, the parameters include just the local Reynolds number

R = pAY/u, the dimensioriless timewise frequency GX = ch/r, and the dimension-

iy
less spacewise frequencies AQ = AQA, where the refereince length A and the refer-
ence velocity X characterize the local besic flow thickness and the adjoining

flow velocity, respectively. Alsc, fior given values of R and GR, the dimension-
less approximate system has non-trivial solutions, called the proper functions,
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{47 Amplitude Coefficient Systems {continued)

\

AL
:f and only 1f the parameters A have certain singular values, called the proper

Al
values. Consequently, the dimensionless proper values depend on just R and c",
and the dimensionlcss coefficients depend on just these parameters and the
dimensionless x3-c30rjinate. However, due to the variation of A and therefore

R and € with x] ard xp, both the dimensionless and dimensional parameters, as

well as the dimensionless and dimensional coefficients, are wea' aperiodic func-
tions of x| arnd xp. The p-oper solutions, distinguished by the superscript T,

are not unigue but instead ange over a sequence of discrete solutions. For
convenience, as is probably true, the proper values of different solutions are
assumed to be distinct in all cases, and the number of solutions is assumed to
be infinite, although these properties neither h.ve been proven nor are essen-
tial. &also, the sclutions are regarded as orcered so that the absolute proper
values

2T _ AT o 2T 172
'Ak I = (A &)

form an ascending sequence, represented by the sequence T = 1,2,...,m.

Although only real values of R exist in the physical prob-
lem under consideraticn, certain complex values of X appear in the mathematical
representation of the partial resonances. 1In particular, the points in the

complex R«plane where ﬁﬁT have specified real or nearly real values, while

24/R has a specified real value, are involved. However, merely those puints
located on or near the real R-axis are important, since only such points are
encountered in the significant partiel resonances. As a result, usually just
a single proper solution, which happens to be the same as the one considered
in ordinary linear stebility theory, is essential in the analysis. However,
the present application of this solution, assumed to be the one for T = 1,
differs greatly from its utilization in that theory.

I'inally, the adjoint amplitude coefficients, denoted by
A LA A A A
gjk’ K ojk r', and Sj’ are needed. These coefficients are defined in the
transition domain D enclosed by the boundary surface Dy on which the unit out-
ward normal vector has the components ny (k = 1,2,3). Besides the whole tran-

sition region, D may include at least parts of the adjacent laminar and turbu-
lent regions. The gjoverning differential sy;tem is deduced by multiplying
fquations (40) by 35k, '?K, Z?k' rk, and s?, respectively, integrating the sum
of the resulting scalars over D, rearranging terms using integrations by parts,
and imposing conditions satisfying Equations (40) and (41). This process
vields the .calar identity
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(4) Amplitude Coefficient Systems (continued)

A AN - A A A
J; {gjk(¢§k - u;'(l: - Uf;ua') + njk('jk - 1“1‘& - l.lj.k)
¢ Oy (o) = odly - PRy ¢ ute) ¢ 1w N

AA
+ lj(ipc uy ¢ i“UkAk + “Uk k)} d(xy)

L {"jk“}k = PC;‘k) + ';‘k [Tl;‘k v rxbjk % “(C;‘k + Caj)]
) AL A A A
* up(Chy + Loghy - 0500 - PG
+ u} (ipcxl} - (el + efUR - amfal o ﬁ}k.k]} d(xy)
. j;:-ﬁugk - u}T Imyde () (42)

where d(x.) and d*(xn) denote volume and area differentials, respectively

(m=1,2,3). To satisfy Equations (40), the left member and therefore the
right member of this relation must vanish. In the right member, this require-

ment is met if the coefficientis of @?k' *}ks W}k' px, and u} vanish in D and
the coefficients of ny vanish on Dy. Thus, Equations (40) and (41) together
are satisfied by imposing the homogeneously linear differential equations

A )
gjk - OCJk

n;k - 'rxbjk - “(C?k + Cﬁ,’
Ao tidil e w»

gy = ©
ich’; -(§;k * gaj)U: = 1n§kA£ B n}k.k

and the tri.ial boundary conditions
A0
lj(xk) = 0
A, ®
lj(xk) = 0 (44)

M) =0
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(4) Amplitude Coefficient Systems (continued)

The parameters here are the same as those in Zquations (40). Also, fcr given

values of R and ?', the dimensionless approximate system has non-trivial solu-

A
tions, again called proper functions, if and only if the parameters A& equal the

proper values of the corresponding system for ctquations (40) and (41). As a
result, both the dimensionless and the dimensional quantities are weak aperiodic
functions of x; and x;. Moreover, the proper solutions, again distinguished by

the superscript T, range over a seque: = of discretc solutions, agein represented
by the sequence T = 1,2,...,=. Howev , whereas the proper values are identical,
the resonance and adjoint amplitude coefficients themselves are different. (Their
differential systems, unlike the more familiar systems of the prevalling litera-
ture, are not self-adjoint.)

An important property here is the fact that, in the transi-
tion domain, each adjoint solution is orthogonal to all resonance sclutions except
the one with the same proper values. 1In particular, substitution of a resonance
solution for T = T) and an adjoint solution for T = T, in Equation (&42) yields

the identity

T, T 3T T
el Yo Loa =0 (45)
T
where the inner product components ey are defined by
ATy T »Tl., +To )Ty

‘JD (SJ LJk s Uj Jk ) d(xm) = e-K (46)

Consequently, if Ay = # Ay , e vanish -- meaning that the two solutions are
}‘Tl )\Tz TITZ

orthogonal -- whereas, if Ay = A, 2k do not all vanish. For convenience,

the resonance and adjoint solutions, which each contain an arbitrary factor owing
to the homogeneity of their differential systems, are regarded as normalized

simultaneously. Specifically, the two arbitrary factors for each value of T
are assumed to be chosen so that

-

eie‘ =1 (47)

P

where the bilinear norm compeonents e{ ave defined by
\T T AT AT T
2 Ra - : Toaa =

| (sJ SVIMY ’UK) Jxp) ey

b (48)

- T
_with Rele;) > 0 when the mean flow is in the positive xl-direction] and so that

6 = 1 (49)




(4) Amplitude Coefficient Systems (continued)

T

vhere the trilinear norm 6  ie definec by

AT AT AT T
T2
As ons result, e) will satisfy the equations
T,.T, T,T
Bkl zekl 2 = ] (Tl = Tz)
(51)

called the biorthonormality :elations.

(E) Growth Functions

Having established the necessary foundation, some important prop-
erties of transition, expressed by various growth functions, now can be deduced.
These growth functions include the amplitude and phase variations caused by the
partial resonances of the driven with the driving Fourier components. Unlike
the amplitude coefficients, they may vary rapidly with x; and x, over soie parts

of the wall but, for the particular boundary values under ccnsideration, will be
almost independent of x3. The analysis now involves the expansion of each Four-

ier component as a sum of products of the growth functions and the amplitude
coefficiente, which include the rapid variations with x3. In this respect, the
technique amounts to an extension of the method of separation of variables,
which often is used for linear partial differential equations in certain situa-
tions. Like the perturbation components, the growth functions are obtained
recursively, starting with initial growth functions ascertained from the bound-
ary irregularities themselves. The higner growch functions are established
recognizing a requirement that al!l amplitude coefficients must be regular in
the complex R-plane, at least on and neer the real R-axis. This requirement
leads to growths with x) and x2 that can be much faster and larger than the

amplifications predicted by ordinary linear stability theory, which overlooks
such a requirement and therefore undoubtedly ie incorrect for infinitesimal ax
well as finite oscillations. Like the driving Fourier components, though,
relatively few of the growth functions will lte important enough to require con-
sideration. Insofar as has been observed, superposition of the terms with the
dominant growth functions should yield motions which at least closely ~esemble
actual transition motions.

The initial growth functions are determined from the differences
between the boundary values of the Fourier coefficients of the first perturba-
tion component and the boundary values of the initial amplitude coefficients.
Thus, in the injection flow, the boundary values of both sets of coefficients
are constants, yielding an injection growth function
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(E) Growth Functions {(continued)

T (52)

For this case, the parame-

which is constant throughout the transition region.
no
= 0.

ters of Equations (38) have the values Aﬁa = aiﬁ (k = 1,2) and Aga = ¢

However, in the fluctuation flow, the boundary values of the Fourier coefficients,
being weak functions of the coordinates, deviate slowly from those of the ampli-
tude coefficients, which are constants. This difference leads to a fluctuation

growth function

nooo 1z

in which the {luctuation growth factors big (k = 1,7,3) are small negative real

constants or zcro throughout the transition region. In this case, if the mean
fiow is in the x)-direction, the parameters of Zquations (38) must have the

: 2 2 o 2 =
values A?“ = a{“ - ib{‘, A;" = aé“, A;“ = 0, and e o= clp. Furthermore, their
values also must satisf{y the determinantal equation

Mo A= (< Ko
kA A T oiolwa +c ) =0 (54)

deduced by substituting adjoining flow quantities into Equations (22). Using

the initial growth functions, ail Fourier coefficients of the first perturba-
tion component can be expressed by products such as

ula = yragua
J J
1 (55)

P

for the injecticn flow and

Lo o Meamn
uj uj G

1- o (56)
p7 = pCHP

for the fluctuation flow. Substitution of such products into Equations (22) and
(23) or (24) yields Equations (38) and (39).

All higher growth functions, for both the mean and the oscillation
Fourier coefficients, are determined recursiveiy from lower growth functions
using essentially one general procedure. Several aspects of this procedure now
are demonstrated on the oscillation Fourjer coefficients of the second perturba-
tion component, which are particularly important in transition. First, sub-
stituting Equations (55) and (56) into Equations (29) or (34), the oscillation

driving coefficients are expressed as
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(E) Gr wth Fynctions (continued)
VY o
fjk fdﬁc (57)

in terms of the driving amplitude coefticients

E?E L u;ﬂhzﬁ + u?eu:a (58)

and the driving growth function

B« ghagn8 (59)

Second, tc adequately meet various requirements, the driven Fourier coefficients
aré expanded in series such as

vy _  ab ae T AT T
uj uj +ZThu j

(60)
pVY - PGBGQB .3 th?.THT

Here, the driven amplitude coefficients u?s and p"B may vary with x, and X, only
slovly like the other amplitude coefficients, the resonance coefficients hY are
constants, and the resonance growth functions HT may vary rapidly with x; ana
Xy Third, substituting such series into Equations (35) and (36) and recalling

that u;r and ka are defined by Equations (40) and (41), the following relations

are obtained:

aa of
“’jk "o k * Eik

w(j’E - iu‘j"aags - u??& G . u‘j"ac‘.’e

=T hTu’jT [HTk + 1(afP - A{;T)HTJ

qu - pd;'g - paabjk + u(v‘j'E + vg?) =0 (61)
498 =
V33 = °

(ip::"eu‘j'B + 1w‘j'EagB + m‘j"E.k)G"ﬁ + m‘j”ec‘.’e

=-% hly “' [HT + 1(a2® - AT)T;
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(E+ Growth Functions (continued)

and

at 0y -

uj (xk) 0

uj'e(x:) =0 (62}
ab .=y -

Here, ais = aia + ais and ¢%8 = cl8 in accordance with Equations (27), whereas

AT A o8

Ak are the proper values of Equations (40) and (41) for c¢” = . Also, for

the particular Fouvier coefficients under consideration,

B AP0
Gk =5%6 (63)

where bﬁs = bla, so that the left membars of the s=cond and fifth equatior 3 vary
with Xy and x, about as slowly as G¥8. Fourth, recognizing that the right mem-
bers of these equations also must vary with x; and x, about like G&B’ the

conditions

T @3 AT\oT _ T-o8
H.k + 1(8k - Ak YH® = ek\- (64)

are imposed, whereupon Equations (61) reduce to

ad _ uC.YSUo - U%°8 = §08

Pik kK~ jk ik

wgg - 1U§BA§8 - u??k = L hTu;TeE

u,‘;’E - pc:c;E - %+ ““"?E - ti’?) = 0 (65)
gheo

1ocaau?5 + 1u§iAi° + u%i’k = -0 hrm;:e:

where Aﬁg = aga - 1bgp. Fifth, to achieve another simplification, the driven

amplitude coefficients themselves are expanded in series such as
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(E) Growth Functions (continued)

af o .. TAT (66)

where the driven coefficients g'r are slowly varying functions of x, and X, (or

are constants*), Sixth, substituting such series into Equations (AS) and (62),
neglecting the derivatives of g* ({f any), multiplying the resulting differentia
equations by the adjoint amplitude coefficients, integrating the sum of the re-
sulting scalars over the transition domain, and agplying Equations (42) through
(51) a5 necessary, the following expression for g* is derived:

1A% . aM)elgT = J; ;§f°§) dx ) - hT (67)

Here, as already indicated, Aga along with c®® are constants determined by the
boundary irregularities alc.ie, whereas A&T vary with R which in turn varies with

Xy and x5. In particular, for each value of T, A&T can equal Ags at some point

in the complex R-plane, causing a pole in gT unless the right member of Equation
(67) vanishes at that point. Indeed, for the smaller values of T and various

P typical values of Ag& and caB, the pole could occur on ¢r near the real R-axis,

strongly contradicting the stipulation that gT is slowly varying. Therefore, as
the seventh step. to avoid the poie, the condition

T= oY)
h j (gjkfjk) dix ) (68)

is imposed at the complex value of R where A&T = Aga (when cx = %), Otherwise,
the value of g'r is not considered furtner, since it generally snould be small

enough to be ncglected. Indeed, just the value of hY for T = 1 probably will

suffice. Applying Equations (49), (50), and (58}, the resonance coefficient
in the present case may be expressed as the ratio

XT AT AT

T, | [ 7% T 8 np AT wey
he= ] ' ) 53k

Uy S iKUK ; Jkuk d(xm ] \u
D D

)d(xm) (69)

*At present, due to a lack of an appropriate expansion theorem for the proper
I; functions, the possibility of these coefficients being constants is uncertain.
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(E) Growth Functions (continued)

which probably will have an order of magnitude of unity at the lower values of T,
Hence, the driven Fourier coefficients, expressed in full by Equations (60),
probably will vary mostly like the sirgle-term approximations

“‘..Y 'r ‘AT 'r
= H
uy h U
(7¢)

pUY - thtxhx

where T = 1 and hI ~ 0(1).

In contrast to their inherently tedious derivation, the resonance
growth functions display some important properties of transition in a

simple way. ~rfor the case just considerec, integrating Equations (64), these
functions have the general forms

T-T -~ T, % ~p, % % - T -1
. Tk*,! KT(xk)G (xk)dxk 4 (xk)-] (71)

~

T
H (xk) = e
(o]

where the resonance kernel K! is defined as

T f__:(’x r < YT, . *
Ki(x,) = exp i k a, - A (xk)] dxk} (72)

o]
and the integration constants JE are assigned so that He is bounded upstream
from the transition region. TFresently, to describe the principal properties of
these functions, the variation of HT with x, along the line x, = xq =0,
with rhe mean flow in the positive xl-direction, is considered. For convenience,
the point x; = 0 is loc:ted somewhere in the transition region, with the inte-
gration progressing from the laminar region at x; — -m to the turbulent region
at x; - +o, To facilitate the integration, deformations of the contour in the
complex xloplane and therefore in the complex R-plane are allowed, Under such
conditions, Equations (71) and (72) reduce to

7 = xl L, X o =1
O e P P T LIP (73)
and
T r X1 . a YT, %)
Ki(x)) = exp 11, ‘a; = & (x))] dxy’ (74)
o
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(E) Growth Functions (continued)

while the driving growth function becomes

Gas(xl) = exp (bqsxl) (75)

2
Here, a?g and b?” are real constants determined by the boundary irregularities,

whereas A%T is a complex tunction of R and thereby is a slowly varying complex

function of x). Hence, depending on the integration contour, vl usvally is an

oscillating function of R and thereby xi+ As is ordinarily true, bIS is assumed

to be very small, allowing B to remain near unity throughout the transition
region. Also, to concentrate on the most important situation, just the value

of A&T for T = 1 is considered further. Besides other distinctions, this value

often can equal 813 on or near the real R-axis and therefore on or near the real
x)-axis, usvally at two dif ferent points corresponding to the two branches of

the neutral curve of ordinary linear stability theory. Because KT usually is
oscillatory, the first main contribution to the integral in Equation (73)

occurs in the vicinity of the first saddle point of KT, to be called the reso-
nance point, which is the first point in the complex R-plane or the corresponding

point in the complex x,-plane where A%T = a?e. Close to this point, KT remains

almost constant, while the integral and therefore HI of ten grows about as fast
as x| varies, causing a correspondingly fast growth of the driven Fourier compo-

nent. In comparison, ordinary linear stability theory would predict a variation
somewhat like [l('r(xl)].l and therefore almost no growth in this region. Further-

more, because AAT varies only slowly with x; and the resonance point ofteu is
located on or near the real x;-axis, the fast growth often persists over a long
interval of the real xj)-axis, yielding a much larger total growth in that region
than would be indicated by ordinary linear stability theory. For example, the
driven Fourier component sometimes can grow by a ratio of the order of 1000 nuar
the resonance pocint alone, such growths evidently being the principal way that
"disturbances" are “introduced” into the boundary layer. Immedistely downstream
of the resonance point, the integral remains relatively constant, ellowing HT o
vary about like [KT(xl)].l and therefore somewhat like the variaticn considered

in ordinary linear stability theory. However, even this resemblance to the
latter theory usually will be obscure, since various other growth functions then
will tend to dominate the motiocn. Further downstream, a second saddle point of

KT, where A%T = a?ﬂ for a second time, may be encountered. In this region, the
integral in Equation (73) will begin to grow substantially again, while the fac-

-1
tor [Kr(xl)} wiil begin to decay. Thereafter, as the net result, HT will steadily
decay and ultimately vanish, out at a slower r:te than predicted by ordinary




(8) Growth Functions (continued)

iinesr stability theory. Along with all growths and decays, some phase varia-
tions and therefore frequency modifications also occur, affecting the Fourier
synthesis of the whole motion and perhaps produciag some appreciable phenomena

of a subharmonic ard/or superharmonic nature (in addition to the harmonic motions
from other Fourier components). Ordinarily, the resonance growth functions of
both two-dimernr‘onal and three-dimenzional partial resonances, wherein

&g? = 0 and agi # 0, respectively, are !rportant, The former resonances tend

te manifest first, since the two-dimensional neutral curve occurs first, whereas
the latter rasonances tend to amplify most, since the three-dimensional proper
values vary most slowly with downstream distance.

Proceeding in the same way, the mean Fourier coefficients of the
second perturbation cemponent also can be estimated. Howevei, these coefficients
probably will be negligible in most boundary layers of interest. For example,
substituting Equations (56) into Equation (30), the mean driving coefficients
for A = 1B are

F';k » ngce (76)
where
F?k = u;ﬁaf (77)

c° = gBme (78)

Also, expanding the driven Fourier coefficients in series such as

v 8.0 = T AT,T
= UG N H
Uj UJ + uj
(79)
BV = P°C° 4+ T hlp TH!
and substituting these series into Equations (31) and (32), the resonance
coefficients
hTz;( Tr )d(x )
G akFydixg \80)

eventually are ceduced, which must be evaluated at the complex values of R where

A;T = -iZb " (with cx = 0), Moreover, the resonance growth functions become
H (x,) = e [T +Jxk KT (6" (e axt) Tk (x )17 (81)
o
where
K (x,) = exp (-1ka AT dx) (82)
o
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(R) Growth Functions (continued)

and JE are constants chosen to keep HT boundsd upstresm. Again, since G° remains

near unity, the sain parts of Hf are scquired near the saddle points of KT,
vhich are at the complex valuee of R where A&? = 0 (with cX = 0), But now the
saddle points probedbly are far from the applicable segment of the real R-axis

or parhaps do not exist, leading to only small variations of HT across the tran-
sition region, Starting from Equations (53), for A = la, similar relations are
deduced, except that the resonance coefficients then must be evaluated where

AT, 0 rgther than where A:T = -12bt?. (To fully clarify such details, actual

R P U S

A

calculations are desirable.)

In contrast, the mean Fourfer coefficients of the fourth pertur-
batior zomponent appsrently can be significant in meny situations. In this case,
considering just one dominant term of the seco~d perturbation component, dis-
tinguished by the superscript T,, the mean driving coefficients are

ng = YskGd (83)
where

P, = WoRTo, )T e (8

cd = plofto (8%)

while the driven Fourier coefficients have series such as

u" . Ude + T hly }THT

Vaepdgd 4+ % hTP)sT“T

(86)

However, in place of Equation (63), the driving growth function now has the
gradient romponents

d - T"’ro T°~'l'o
(:.k H'zﬂ + H u’k

\ ~T N ¢ T
- 1(&":r 'i':r") ToRo 4+ o c°au °. .:6“'5" °
which can be approximated as
o, = 1gTo - XTo)? (87)
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(B) Growth Functions (cuntinue?)

since C°P will be much smaller vhan HIO in the important regions. Conseguently,
the resonance growth functions sre requirsd io satisfy

T AT, T _ T X
WL - 1A TH ¢4 (88)
and the resonance coefficients becove

T \Tod
h* = | (B Fep)d(xg) (89)
I; Jk* §k/9 Xy

which are evaluated at the complex values of R where A:T = A¢T° - 2¢T° (with

et n 0)« Finally, integrating Equation (88), the resonance growth functions
have the general forms

HT(xk) = e: [Jz + [xk KT(x:)Gd(x:)dx:] [KT(xk)].l (90)
‘o
where
KTOx) = e [-1[ % AT (e ax) (91)
o

and JE are constants chosen to keep HT bounded upstream. ilere again, the

saddle points of KT, located at A&T = 0 (with c* = 0), probably are too far from

the applicable segment of the real R-axis to be influential, However, unlike

G* in the preceding case, ¢d may increase rapidly and greatly along

that segment, apparently causing significant variations in HI and therefcre in
the driven Fourier coefficients. (Again, for clarification, actual calculations
are desirable.)

Similarly, the oscillation Fourier coefficients of the third,
fourth, and perhaps higher perturbation components may be important, For
example, considering the fourth perturbation quantities from two dominant terms
of the second perturbation component with the indices 1 and 2, the oscillation
driving coefficients are

fgz = fgkcd 92
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{E) Crowth Functions (continued)

where

d 11,72, ATy ‘A'I'z 2 ATy
£ = 0 2y e 40T

¢* = HFlgT2
Again, the driven Fourier coefficients have series such as
oYY = dcd +T hTuXT“T
b 3 |

while the driving growth function has the gradient ccmponents

d w2 4 pTlpt2
G H
Ok - Ok Ok

which can be approximated as
AT \ -
- ,(%11 +AT2 .:1-91 . .:zsz)cd

Thus, eventually, the resonance coefficiants are evaluated as
T AT d
nT « In (EE ) d(xy)

at the complex value of R where A:T - A:Tl + Ak

A

0131

H ("k) - .k [Jk +r“ K (xk)Gd(x:)dx:'] [KT(xk)].l
where

- .:232 (with

(93)

(94)

(95)

: T T T
» t(A:TI +,A;T2 - .:131 - .:ZBZ)ﬁTIHTz +_.RLG°1918 24 2GGZSZHT1

(96)

(97)

c® = 181 4 c¥282), and the resonance growth functions are expressed as

(98)
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{E) CGrowthk Functions (continued)

and JE_are chosen to keep HT bounded upetream, Here, as in the origine

exsmple, the saddle points of KT, iocated where A&T = ,glﬁl + ‘gzsz (with

c* = @181 1+ ¢¥282), can occur on or near the real R-axis, greatly increasing

the growth of uT, Algo, as in the preceding exanple, G4 fcself can increase
- greatly along that axis. Hence, these tendencies together can yield an

exceptionally large growth of H! and therefore of the driven Pourier coeffi-
cients. Hewever, the actual values of thesc coefficients, which contgin the

factor (€)* where ¢ is much smaller than unity, should remagin within the same
order of magnitude as the dominant lower perturbation quantities (at least in
the transition region of the boundary layers of practical interest).

In general, the growth functions sre bounded throughout the boundary
layer. 1In fact, as easily seen, these functions can grow indefinitely only when
some proper values have special constant values for unlimited downstreesm dis-
tances, which can happen only in certain truly parallel flows of unlimited length
{such as certain Poiseuille flows and asymptotic suction boundary layers). Con-
sequently, Fourier components with amplitudes increasing indefinitely with down-
stream distance, cslled secular teims, ordinarily are nct encountered.* As a
result, the perturbation series use’ here generally shcu.d converge better than
analogous series would in the more familiar problems of the classaical theory of
nonlinear oscillations, where secular terms often are encountered unless some
other approximation scheme {s utilized (which may entai! an asymptotic series
wvith uncertain convergence properties). Moreover, the perturbation series should
apply particularly well to the initial phase of transition, which is the main
objective in many analyses (especially those concerning laminar flow control
techniques). For example, fcr very small boundary irregularities, just the first
two perturbation components may be sufficient to describe the principal distur-
bance motions throughout both the laminar region and the beginning of transition
and therefore to relatively large Reynolds numbers. (Such motions, though, will
differ significantiy from those predicted by ordinary linear stability theory.)
Likewise, for somewhat larger boundary irregularities or Reynolds numbers, just
a few more perturbation components may be adequate2. Furthermore, the perturba-
tion 3eries should adapt well to automatic computation on an electronic computer,
enabling a rather large number of perturbation components to be evaluated when
needed. In particular, the growth functions, which are the principal elements,
can be obtained recursively by rather simple numerical integrations. Thus, for
many purposes, the perturbation series should be quite satisfactory.

However, in the finai phase of transition and the ensuing turbulence,
the computations become more complicated. In particular, as the perturbation
order increases, the normalized growth functions increase (retarding the con-
vergence), while the Reynolds numbers at which these functions appear also
increase (assisting the convergence). Meanwhile, through a rather involved

*Specifically, secular terms can occur only when, for an indefinite downstream
distance, the space and time frequencies of one or more driving oscil.ations
nearly equal those of one or more points on the neutral curve of ordinary
'inear stability theory. Hence, such terms mey exist only if the Reynolds num-
per is near or above the stability limit of that theory.
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(£) Growth Functions (contimued)

sequence of relationships depencing on the actusl boundary irregularities, a
rPartial countaraction of lower perturtation cowponents by higher perturbtetior
components eventualiy appears and then may prevail (furthering the convergerie
but hindering its evalustion), Neverthsless, additional sanalyses and actual
calculations slwuld clerify the computetions and may suggest a more convenient
series or expression. As one exampie, soms informetion about the convergence,
and perlmps some useful spproximstions, might ba deduced by comparing the work
available from the first perturtation componsnt with the energy indicated by

the perturbation series. (Perhaps, Uy this means, an approximation of the
growth of turtulence energy with downstresm distance, snabling an estimation of
tha skin friction, could be established.) As anotber example, fuither insight
into the convergence, and into equilibrated turbulence as well, might be pained
by extending an elementary turbulence model proposed by Raetz (Keference 1 )*

80 as to include one or more dominant forcing oscillations from the first per-
turbeation component. Otherwise, an asymptotic series analogous to thoss utilized
in the classical theory for weakly nonlinear oscillations might be obtainable and
in some ways useful. However, such a serius, besides covering the pertinent
boundary irregularities, should apply to moderately large nonlinear osciilations.
The's, at the ralevant conditions, it might diverge or at least convergs too poorly
to bs desirable. Conjointly, it chould bs noted that any demand for an asymptotic
series will be less compelling in a boundary layer of limited length than in
processes of unlimited duration (which are the main subiects of the classical
theory of nonlinesr oscillations). Conversely, depending on the uniformity of
the actual boundary irregularities, a reliable asymptotic series might be appic-
priate for a truly parallel flow, in which secular terms sometimes can occur.
However, a suitable summation of the perturbation series already developed then
might be obtained and managed more easily than an asymptotic series (especially
since the classical theory has not yet been extended to three-dimensional motions
of the kind concerned here). In particular, in a truly parallel flow with
periodic boundary irregularities, the growth functions degenerate to quite

simple expressions, suggesting that an approximate or exact summation of all
nonsecular and secular terms might be established and investigated rather easily
(especially with the aid of an automatic computer). Further expl-ration of such
aspects of the theory are deferred for later papers.

(F) Trsnsition Mechanism

According to the resonance theory, the motion commonly called
transition is merely a part of a sequence of partial resonances beginning in the
laminar region snd continuing in the turbulent region. In general, this sequence
may be excited by any of a large variety of combinations of boundary irregulari-
ties st the wall surface and in the adjoining flow, and it altogether may con-
tain numerous partial resonances of several different kinds, yielding a whole
motion which 1is indeed diverse and complicated. Nevertheless, as already indi-
cated, the individual partial resonances are quite simple and, in fact, can be
analysed snd calculated in a recursive manner by available techniques. In par-
ticulsr, the dominant motion from each significant partial resonance can be
represented by just the product of three elementary variations, namely: an
oscillation expressed by the phase function, an amplification and slight oscil-
lation in the downstream direction expressed by the resonance growth function,

*This model is sn extension of instructive finfte-disturbance models introduced
by Meksyn and Stuart (Reference 43/ and Stuart (Reference 51).
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(E) TIransition Mecharnies (continued)

and a distribution acrcss the boundary layer expressed bv the resonance amplitude
coefficient. Alsc, the overail magnitude and phase of this motion are determined
by the product of the applicable pover of the perturbation parameter and the
applicable resonance coefficience, Furthermore, typicul sequences of partial
resonances, which might de adequate for analyzing and predicting transition

in an approximate way, can be constructed from just a few suitably chosen par-
tial resonances,

When the boundary irregularities have wide spectra of Fourier com-
ponents, as in most actual boundary layers, the partial resonarces ganerating the
second perturbation motions tend to become noticeable somewhere near the critical
Reynolds number of ordinary linear stability theory and thereafter to manifest
more frequently and strongly, Initially, the dominant driven Fourier camponents
are mainly two-dimensionai, with wave fronts about normal to the mean flow direc-
tion; but eventualiy, they are mostly three~dimens ional, with wave fronts in all
directions, Somewhere after the begianing of such pkenomena, the partial reso-
nances yielding the third and fourth perturbation motions tend to become signifi-
cant and thereafter to appear more frequently and strongly. In this case, the
dominant driver Fourier components are mostly three-dimensional, and they also
supplement the second perturbation motions, su™stantially increasing the intri-
cacy of the whole motion, Further downstream, the partial resonances providing
the higher perturbation motions may become important and further complicate the
whole motion. Thus, in general, the partial resonances tend to manifest some-
what like a gradually developing avalanche, initially generating a few weak
simple moticns in the ladnar region and eventually producing numerous strong
complex motions in the turbulent region., Ott -~wise, within this overall trend,
they tend to appear partially randomly owing co the randommness of the boundary
irregularities, In the whole process, several mean Fourier components become
significan®, causing a rather gradual distortion of the mean flcw. Also, the
oscillation Fourier components often vary abruptly as a result of the rapid
growths near the resonance points, causing burste-like phenomena. In the synthe-
gis of the component motions, varicus other phenomena that are observed in
experiments can be expected., For example, the non-exponential amplifications
of partial oscillations reported by Klebanoff and Tidstrom (Reference 37) seem
to be 1 :presentable by merely superpositions of growths from successive pertur-
bations, Likewise, considering the generality of the present theory, any special
phenomena that are proposed and verified in other theories on instability, trane
sition, and turbulence probably can be found, For example, insofar as they
actually occur, the bent vortices suggested by Theodorsen (Reference 54) and
the streamwise vortices aypothesized by Lin and Zenney (Reference 42) probably
ara2 encompassed by the present theory.*

Within this overall concept, ordinary linear stability theory
pertains to just the simplest part of the second perturbstion motion. In par-
ticular, that theory not only ignores the part of the second perturbation motion

*Notwithstanding some resemblance, the Lin and Benney theory differs from the
resonance theory in several respects. For exemple, the fomer theory involves
fundamentally different perturbation and growth schemes. Also, it should be
noted, some experimental observations suggesting streamwise vortices, including
cata cited by Lin and Benney in support of their theory, may be attributable
instead to crossflow vortices caused by small crosswise pressure gradients.
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(F) Trangition Mechanisa (continued)

reprerenting the introducing of disturbances into the boundary layer but also
misrepresents the eventual diminution cf that motion and completely neglects all
other perturbation motious. Also, the original form of the rasonance theory
introduced by Raetz (Refarence 1) pertains mostly to that part of the fourth
perturbation motion which is generated from the motions of the linear theory

(by total rather than partial resonances). Moreover, an energy exchange
mechanism claimed by Benney and Lin (Reference 27)* mainly amounts to an
eventual counteraction of a part of the second perturbation motion by a part

of the sixth perturbation motion.

Conjointly, an implication by Benney and Niell (Reference 28)
that such an energy exchange mechanism generally prevents individual partial
resonances** from being prcainent appears to be inappropriate. Their anelysis
considers an elementary simulant differential system which, due basically to
irrelevant boundary conditions, really resembles the differential system
of a laminar boundary layer with a slight irregularity in the initial velocity
profile but no irregularities at the wall surface and in the adjoining flow.
As a result, the analysis involves just an autonomous system whereas, to
properly typify “he pertinent boundary irregularities, a non-autonomous system
would be essential. In such a case, as known from various numerical integra-
tions of the boundary layer equations, the distortion tends to decay quite
rapidly in the downstream direction -- there being no noticeable partial
resonances. In fact, this tendency has been utilized for calculating stagna-
tion profiles of general boundary layers (Reference 45). Hence, although
their analysis dces Zndicate a suppression of certain partial resonances by an
erergy exchange mechanism, a similar suppression does not necessarily prevail
at transition. Instead, a quite different and usually weaker interaction, mani-
festing sequeatially like the higher perturbation motions and depending sensibly
on the perturbation parameter, probably appertains. For example, an individual
Fourier component of the second perturbation motion may grow considerably before
any opoosing Fourier component of a higher perturbation motion becomes significant,
and the suppression then will depend substantially on the perturbation parameter
(and various other quantities). Indeed, such a trend seems to be discernible in
the streamwise grcwths and decays of partial oscillations measured by Kiebanoff
and Tidetrom (Reference 37). Thus, in certain circumstances, individually strong
partial regsonances apparently are possible. Moreover, wherever discrete vortices
are formed, such resonances evidentlv are important.

Since the partial resonances tend to become significant in a
somewhat gradual manner, traneition itself cannot be defined nor be located
very dietinctly. In most boundary layers, the so-called transizion is merely
a partially random succession of partial resonances that are stronger and more
frequent than in the laminar flow but are weaker and less frequent than in the
turbulent flow, these distinctions being quite arbitrary. Thus, in general,
transition as commonly recognized does not involve a distinct change in the
fundamental nature of the motion. However, in some boundary layers, a region
where some higher perturbation component first becomes significant may be dis-
cernible, suggesting a distinct change. Otherwise, where a practical criterion
is needed, transition can be regarded simply as the onset of an appreciable
distortion of the mean flow. This criterion indicates the beginning of an
appreciable increase in the shearing stress on the wall surface, which is a
main consequence of the departure from laminar flow.

*This claim appears to have been based on a doubtful argument published later
by Benney and Niell, which ig discussed in the next paragraph.
**called apparent resonances in References 27 & 28.
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(F) Trensition Mechanism (continued)

In the preceding analysis, for simplicity, the boundary irregu-
larities were assumed to include just a simple injection at the wall surface and
a simple fluctuation in the adjoining flow. These irregularities introduced,
respectively, a stationary and a traveling spectrum of Fourier components into
the first perturbation component. As a result, the frequencies of some of the
driving Fourier components formed from these spectra could resemble scme of the
natural frequencies or proper values of the driven Fourier components and thereby
could yield some significant partial resonarces, However, similar frequencies
and thereby similar resonances also can result from any of a large variety of
other combinations of boundary irregularities. For example, without altering
the general nature of the whole motion, the injection spectrum can be replaced
by a more general stationary spectrum representing injection or suction through
discrete areas or slots or representing waviness or roughness of the wall sur-
face. In this case, the main additional problem is the estimation of that
spectrum, which requires only a linear superposition of products of the initial
amplitude coefficients and the phase functions. Similarly, the fluctuaticn uspec~
trum can be replaced by a more general traveling spectrum representing external
turbulence or sound. In this case, also, the main additional problem requires
only & linear superposition of basic functions, using compressible relatioas for
the external sound.* In fact, the injection and fluctuation spectra together
can be replaced by a single traveling spectrum with certain space ard time fre-
quencies. Sometimes, just the spectrum from a vibrating wall surfece can
produce a sequence of significant partial resonances. Likewise, the spectrum
from a vibrating ribbon within the boundary layer, such as used by Schubauer and
Skramstad (Reference 48 } may yield partial resonances like those at transition.
However, by itself, neither a stationary spectrum from the wall surface nor a
traveling spectrum from the adjoining flow can produce important partial reso-
nances within boundary layers like that considered so far, due to the restricted
ranges of the natural frequencies in such boundary layers.

Although generated in a similar way, the various dominant motions
from a particular combination of boundary irregularities usually differ in
several details, As one example, as already indicated, two-dimensional motions
tend to appear first, whereas three-dimensional motions tend to grow most. As
another example, the lower perturbation motions must occur first, but the higher
perturbation motions may grow faster and also may become more numerous eventually.
Along with such tendencies, the three~dimensional trends of the lower perturba-
tion motions over'ap the two-dimensional trends of the higher perturbation motions,
diminishing any .istinctness in the transition region. As a further example,
special motions may result from the partial resonances in the more general bound-
ary layers, such as Goertler vortices when the wall surface {s curved and cross-
flow vortices when the adjoining flow is curved. (Unlike most motions, these
particular vortices can be excited by just a stationary spectrum of boundary
irregularities at the wall surface.) Such special phenomena supplement the
motions considered so far, and they may or may not be the more important, depend-
ing on their intensity. Also, as an interesting but unverified possibility, the

*An, wavin:se or roughness of the wall surface complicates the boundary condi-
tions for cach perturbation. However, in some cases, as an approximation, this
complication probably can be neglected in the second and higher perturbations.
In other cases, a waviness might be handled conveniently as a periodic pertur-
bation of the metrical coefficients of a curvilinear coordinate system,
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(F) Transition Mechanism (continued)

resonance amplitude coefficients representing the cdistributions across the
boundary layer perhaps may include abnormal as weii as normal proper solutions
{such as are used in ordinary linear stability theory). The abnormal proper
solutions might exist for certain singular proper values encountered in three-
dimensional motions, and they might account for some observations (see Part G-3).

When the basic flow itself is altered, several important changes
can occur in the sequence of partial resonances. In the first place, the overall
development of this sequence depends indirectly on the neutral curve of ordinary
linear stability theory, which in turn depends greatly on the distribution of
the basic flow velocity across the boundary layer. More specifically, an altera-
tion or this distribution modifies tha relationship of the proper velues to the
local Reynolds nuwber and the timewise frequency -~ thereby affecting the loca-
tions, durations, and strengths of the partial resonances and also the space and
time frequencies of the dominant oscillations. In the second place, the strengths
of the partial resonances further depend on the rate of variation of the local
Reynolds number with downstream distance. Thus, as the local Reynolds number and
thereby the proper values vary relatively slowly or rapidly, the total gt .:ths
from the partial resonances become relatively large or small, respectively,
shifting the position cf transition accordingly. Such a trend apparently has
been encountered in various experiments on bodies of revolution.* On the forward,
central and rearwerd parts of such bodies, transition has been observed at respec-
tively lower, similar, and higher local Reynolds numbers than on essentially flat
surfaces with locally similar basic flows, these discrepancies apparently being
due in part to the differences in the rate of variation of the local Reynolds
number.** When transition is suppressed by suction through the wal!l suriace,
the same trend may diminish the effectiveness of the suction, insofar as the
rate of variation of the local Reynolds number is decreased. However, unless
the boundary irregularities including the suction variations are too large, this
adverse trend ordinarly can be overcome merely by stronger suction, which other-
wise tends to suppress the partial resonances. Furthermore, as already indicated,
a concave curvature of the wall surface or a crosswise curvature of the adjoining
flow may allow an additional class of proper sclutions and thereby an additional

*Also, such a trend evidently can aggravate any tendency toward transition
near the leading edge of a swept wing. Specifically, if the noge radius is
large enough to allow a sufficieatly thick boundary layer in that region,
the totel growths along the stagnation line in the spanwise direction appar-
ently can become excessive as a result of the slow variation of local Reynolds
number and the long distance in that direction together with other adverse
factors (such as a relatively small minimum Reynolds number on the applicable
neutral curve, a roughness due to dust and ‘nsects, and usually an initial
turbulence from a fuselage or other adjoinirg surface). Furthermore, such
a trend may help explain an unresolved disci.epancy between the observed and
calculated stability limits for the crossflow vortices on a rotating disk.

So far, the observed value has appeared to be much higher than the calculated

value, perhaps partly because the Reynolds number varies too fast to allow

detectable partial resonances to occur near the actual stability limit,
**This trend also is influenced by differences in the neutral curves due to

the differences in the wall curvature.
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(F) Transition Mechanism (continued)

type of motion, in the form of Goertler or crossflow vortices, to oxist., According
to the resonance theory, such vortices grow downstream in a different way thain in
ordinary linear stability theory.

Insofar as the resonance theory is valid, the main techniques for
preventing transition are quite obvious. In the first place, ail boundary irregular-
ities--including the wall waviness and roughness, the external turbulence and sound,
any irregularities due to suction through discrete appertures, etc.--should be
minimized. Thereby, all perturbation motions will have minimum magnitudes, the
higher perturbation motions being suppressed the most. However, among the Fourier
compcnents of the boundary irregularities, just those wit!. the frequencies allowing
strong partial resonances need to be diminisicd those with other f:equencies being
inconsequential. In the second place, the baeic fiow should be controlled so es
to shift the local neutral curves and thereby the important partial resonances to
the highest possible local Reynolds numbers, especially in those regions where tran-
sition otherwise tends to occur. In some cases, adequate control can be exercized
merely by appropriately choosing the wall surface contour and the adjoining flow
distribution. In cexrtain cases, such control might be attained by coating the
wall with & properly selected and sufficiently uniform viscoelastic layer so as
to shift the strong partial resonances tc higher local Reynolds numbers. In many
cases, the best controclis achieved by applying sufficiently strong and uniform
suction through the wail surface. In the third place, as necassary an possible,
the boundary layer thickness should be reduced so as to complete the prevention
of strong partial resonances. In general, this reduction can be attained best by
sufficiently strong sucticn. Such aspects of the theory, particularly the question
of whetber laminar flow can be maintained indefinitely in the stresm<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>